import numpy as np from PIL import Image import streamlit as st from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel, GPT2Tokenizer, GPT2LMHeadModel # Directory path to the saved model on Google Drive model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") # Load the pre-trained model and tokenizer model_name = "gpt2" tokenizer_1 = GPT2Tokenizer.from_pretrained(model_name) model_2 = GPT2LMHeadModel.from_pretrained(model_name) def generate_captions(image): image = Image.open(image).convert("RGB") generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0]) sentence = generated_caption text_to_remove = "<|endoftext|>" generated_caption = sentence.replace(text_to_remove, "") return generated_caption # Define the Streamlit app def generate_paragraph(prompt): # Tokenize the prompt input_ids = tokenizer_1.encode(prompt, return_tensors="pt") # Generate the paragraph output = model_2.generate(input_ids, max_length=200, num_return_sequences=1, no_repeat_ngram_size=2, early_stopping=True) # Decode the generated output into text paragraph = tokenizer_1.decode(output[0], skip_special_tokens=True) return paragraph # create the Streamlit app def app(): st.title('Image from your Side, Trending Hashtags from our Side') st.write('Upload an image to see what we have in store.') # create file uploader uploaded_file = st.file_uploader("Got You Covered, Upload your wish!, magic on the Way! ", type=["jpg", "jpeg", "png"]) # check if file has been uploaded if uploaded_file is not None: # load the image image = Image.open(uploaded_file).convert("RGB") # Image Captions string = generate_captions(uploaded_file) st.image(image, caption='The Uploaded File') st.write("First is first captions for your Photo : ", string) generated_paragraph = generate_paragraph(string) st.write(generated_paragraph) # run the app if __name__ == '__main__': app()