import openai import os # Access repository secret api_key = os.environ.get('OPENAI_API_KEY') # Check if the secret is available if api_key: st.write("API Key:", api_key) else: st.write("API Key not found.") import numpy as np from PIL import Image import streamlit as st from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel, GPT2Tokenizer, GPT2LMHeadModel # Directory path to the saved model on Google Drive model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning") feature_extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning") def generate_captions(image): image = Image.open(image).convert("RGB") generated_caption = tokenizer.decode(model.generate(feature_extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0]) sentence = generated_caption text_to_remove = "<|endoftext|>" generated_caption = sentence.replace(text_to_remove, "") return generated_caption def generate_paragraph(caption): prompt = "Generate a paragraph based on the following caption: " + caption # Make the API call to GPT-3 response = openai.Completion.create( engine='text-davinci-003', # Specify the GPT-3 model prompt=prompt, max_tokens=200, # Adjust the desired length of the generated text n = 1, # Set the number of completions to generate stop=None, # Specify an optional stop sequence temperature=0.7 # Adjust the temperature for randomness (between 0 and 1) ) # Extract the generated text from the API response generated_text = response.choices[0].text.strip() return generated_text # create the Streamlit app def app(): st.title('Image from your Side, Detailed description from my site') st.write('Upload an image to see what we have in store.') # create file uploader uploaded_file = st.file_uploader("Got You Covered, Upload your wish!, magic on the Way! ", type=["jpg", "jpeg", "png"]) # check if file has been uploaded if uploaded_file is not None: # load the image image = Image.open(uploaded_file).convert("RGB") # Image Captions string = generate_captions(uploaded_file) st.image(image, caption='The Uploaded File') st.write("First is first captions for your Photo : ", string) generated_paragraph = generate_paragraph(string) st.write(generated_paragraph) # run the app if __name__ == '__main__': app()