kusumakar commited on
Commit
d976bcb
·
1 Parent(s): d049643

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -86
app.py DELETED
@@ -1,86 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- from PIL import Image
4
- import streamlit as st
5
- from transformers import GPT2Tokenizer, GPT2LMHeadModel
6
- from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTFeatureExtractor
7
-
8
- # Load the Model
9
- model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
10
-
11
- # Load the feature extractor and tokenizer
12
- extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
13
- tokeniser = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
14
-
15
-
16
- def preprocess_image(image_path):
17
- # Load the image using OpenCV
18
- image = cv2.imread(image_path)
19
-
20
- # Resize the image while maintaining the aspect ratio
21
- resized_image = cv2.resize(image, (224, 224))
22
-
23
- # Add an extra dimension to represent the batch size (assuming a single image)
24
- preprocessed_image = np.expand_dims(resized_image, axis=0)
25
-
26
- return preprocessed_image
27
-
28
-
29
- def generate_captions(image):
30
- generated_caption = tokeniser.decode(model.generate(extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
31
- sentence = generated_caption
32
- text_to_remove = "<|endoftext|>"
33
- generated_caption = sentence.replace(text_to_remove, "")
34
- return generated_caption
35
-
36
- # Load the pre-trained model and tokenizer
37
- model_name = "gpt2"
38
- tokenizer = GPT2Tokenizer.from_pretrained(model_name)
39
- model = GPT2LMHeadModel.from_pretrained(model_name)
40
-
41
- # Define the Streamlit app
42
- def generate_paragraph(prompt):
43
- # Tokenize the prompt
44
- input_ids = tokenizer.encode(prompt, return_tensors="pt")
45
-
46
- # Generate the paragraph
47
- output = model.generate(input_ids, max_length=200, num_return_sequences=1, early_stopping=True)
48
-
49
- # Decode the generated output into text
50
- paragraph = tokenizer.decode(output[0], skip_special_tokens=True)
51
- return paragraph
52
-
53
- # Streamlit app
54
- def main():
55
- # Set Streamlit app title and description
56
- st.title("Paragraph Generation From Context of an Image")
57
- st.subheader("Upload the Image to generate a paragraph.")
58
-
59
- # create file uploader
60
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
61
-
62
- # check if file has been uploaded
63
- if uploaded_file is not None:
64
- # load the image
65
- image_open = Image.open(uploaded_file).convert("RGB")
66
-
67
- img = preprocess_image(image_open)
68
-
69
- # context as prompt
70
- prompt = generate_captions(img)
71
- st.write("The Context is:", prompt)
72
-
73
- # display the image
74
- st.image(uploaded_file)
75
-
76
- # Generate button
77
- if st.button("Generate"):
78
- if prompt:
79
- generated_paragraph = generate_paragraph(prompt)
80
- st.success("Generated Paragraph:")
81
- st.write(generated_paragraph)
82
- else:
83
- st.warning("Please enter a prompt.")
84
-
85
- if __name__ == "__main__":
86
- main()