Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import torch
|
2 |
import numpy as np
|
3 |
from PIL import Image
|
@@ -9,6 +10,7 @@ model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-cap
|
|
9 |
extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
10 |
tokeniser = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
11 |
|
|
|
12 |
def generate_captions(image):
|
13 |
generated_caption = tokeniser.decode(model.generate(extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
|
14 |
sentence = generated_caption
|
@@ -21,7 +23,7 @@ model_name = "gpt2"
|
|
21 |
tokenizer_2 = GPT2Tokenizer.from_pretrained(model_name)
|
22 |
model_2 = GPT2LMHeadModel.from_pretrained(model_name)
|
23 |
|
24 |
-
# Define the
|
25 |
def generate_paragraph(prompt):
|
26 |
# Tokenize the prompt
|
27 |
input_ids = tokenizer_2.encode(prompt, return_tensors="pt")
|
@@ -33,14 +35,14 @@ def generate_paragraph(prompt):
|
|
33 |
paragraph = tokenizer_2.decode(output[0], skip_special_tokens=True)
|
34 |
return paragraph.capitalize()
|
35 |
|
36 |
-
#
|
37 |
def main():
|
38 |
# Set Streamlit app title and description
|
39 |
-
st.title("
|
40 |
-
st.subheader("Upload the
|
41 |
|
42 |
# create file uploader
|
43 |
-
uploaded_file = st.file_uploader("
|
44 |
|
45 |
# check if file has been uploaded
|
46 |
if uploaded_file is not None:
|
@@ -49,13 +51,12 @@ def main():
|
|
49 |
|
50 |
# context as prompt
|
51 |
prompt = generate_captions(image)
|
52 |
-
st.write("The Context is:", prompt)
|
53 |
|
54 |
# display the image
|
55 |
st.image(uploaded_file)
|
56 |
-
|
57 |
-
generated_paragraph = generate_paragraph(prompt)
|
58 |
|
|
|
|
|
59 |
st.write(generated_paragraph)
|
60 |
|
61 |
if __name__ == "__main__":
|
|
|
1 |
+
#load all necessary libraries, Don't forget to check the system requirements or dependencies
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
|
|
10 |
extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
11 |
tokeniser = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
12 |
|
13 |
+
# define the function
|
14 |
def generate_captions(image):
|
15 |
generated_caption = tokeniser.decode(model.generate(extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
|
16 |
sentence = generated_caption
|
|
|
23 |
tokenizer_2 = GPT2Tokenizer.from_pretrained(model_name)
|
24 |
model_2 = GPT2LMHeadModel.from_pretrained(model_name)
|
25 |
|
26 |
+
# Define the Function
|
27 |
def generate_paragraph(prompt):
|
28 |
# Tokenize the prompt
|
29 |
input_ids = tokenizer_2.encode(prompt, return_tensors="pt")
|
|
|
35 |
paragraph = tokenizer_2.decode(output[0], skip_special_tokens=True)
|
36 |
return paragraph.capitalize()
|
37 |
|
38 |
+
# Define the streamlit App
|
39 |
def main():
|
40 |
# Set Streamlit app title and description
|
41 |
+
st.title("Have a Picture! Don't Know how to Describe?. Here's Some Help")
|
42 |
+
st.subheader("Upload the Picture to get Catchy Description.")
|
43 |
|
44 |
# create file uploader
|
45 |
+
uploaded_file = st.file_uploader("Drag and Drop or Upload the picture", type=["jpg", "jpeg", "png"])
|
46 |
|
47 |
# check if file has been uploaded
|
48 |
if uploaded_file is not None:
|
|
|
51 |
|
52 |
# context as prompt
|
53 |
prompt = generate_captions(image)
|
|
|
54 |
|
55 |
# display the image
|
56 |
st.image(uploaded_file)
|
|
|
|
|
57 |
|
58 |
+
# generate and display the description
|
59 |
+
generated_paragraph = generate_paragraph(prompt)
|
60 |
st.write(generated_paragraph)
|
61 |
|
62 |
if __name__ == "__main__":
|