sunbird / app.py
kuyesu22's picture
Update app.py
17c3ba4 verified
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
import os
import gradio as gr
# Login to Hugging Face Hub
access_token = os.environ.get("HUGGING_FACE_HUB_TOKEN")
login(token=access_token)
# Define model details
peft_model_id = "kuyesu22/sunbird-ug-lang-v1.0-bloom-7b1-lora"
config = PeftConfig.from_pretrained(peft_model_id)
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
torch_dtype=torch.float16, # Use mixed precision for speed
device_map="auto" # Automatically allocate to available devices
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora fine-tuned model
model = PeftModel.from_pretrained(model, peft_model_id)
# Ensure model is in evaluation mode
model.eval()
# Define inference function
def make_inference(english_text):
# Tokenize the input English sentence
batch = tokenizer(
f"### English:\n{english_text}\n\n### Runyankole:",
return_tensors="pt",
padding=True,
truncation=True
).to(model.device) # Move batch to the same device as the model
# Generate the translation using the model
with torch.no_grad():
with torch.cuda.amp.autocast(): # Mixed precision inference
output_tokens = model.generate(
input_ids=batch["input_ids"],
attention_mask=batch["attention_mask"],
max_new_tokens=100,
do_sample=True, # Enables sampling for more creative responses
temperature=0.7, # Control randomness in predictions
num_return_sequences=1, # Return only one translation
pad_token_id=tokenizer.eos_token_id # Handle padding tokens
)
# Decode the output tokens to get the translation
translated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
return translated_text
# Gradio Interface
def launch_gradio_interface():
inputs = gr.components.Textbox(lines=2, label="English Text") # Input text in English
outputs = gr.components.Textbox(label="Translated Runyankole Text") # Output in Runyankole
# Launch Gradio app
gr.Interface(
fn=make_inference,
inputs=inputs,
outputs=outputs,
title="Sunbird UG Lang Translator",
description="Translate English to Runyankole using BLOOM model fine-tuned with LoRA.",
).launch()
# Entry point to run the Gradio app
if __name__ == "__main__":
launch_gradio_interface()