Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
8 |
+
peft_model_id = "kimmeoungjun/qlora-koalpaca"
|
9 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
|
11 |
+
model = PeftModel.from_pretrained(model, peft_model_id).to(device)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
|
13 |
+
|
14 |
+
def generate(q):
|
15 |
+
inputs = tokenizer(f"### 질문: {q}\n\n### 답변:", return_tensors='pt', return_token_type_ids=False)
|
16 |
+
outputs = model.generate(
|
17 |
+
**{k: v.to(device) for k, v in inputs.items()},
|
18 |
+
max_new_tokens=256,
|
19 |
+
do_sample=True,
|
20 |
+
eos_token_id=2,
|
21 |
+
)
|
22 |
+
result = tokenizer.decode(outputs[0])
|
23 |
+
answer_idx = result.find("### 답변:")
|
24 |
+
answer = result[answer_idx + 7:].strip()
|
25 |
+
return answer
|
26 |
+
|
27 |
+
gr.Interface(generate, "text", "text").launch(share=True)
|