ColorMasking / models.py
kwilliamson's picture
changing prompting strategy
8599051
import numpy as np
import torch
from PIL import Image
from controlnet_aux import LineartDetector
from diffusers import (
ControlNetModel,
StableDiffusionControlNetPipeline,
UniPCMultistepScheduler
)
class LineartGenerator:
def __init__(self, device: str = None, seed: int = 0):
self.device = device if device else ("cuda" if torch.cuda.is_available() else "cpu")
self.dtype = torch.float16 if self.device == "cuda" else torch.float32
self.seed = seed
self._initialize_models()
def _initialize_models(self):
self.lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart"
self.controlnet = ControlNetModel.from_pretrained(checkpoint)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=self.controlnet
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(self.device)
@staticmethod
def load_lineart_image(uploaded_file, size: tuple = (512, 512)) -> np.ndarray:
if not uploaded_file:
return None
with open(uploaded_file.name, "rb") as file_obj:
image = Image.open(file_obj).convert("L")
image = image.resize(size)
return np.array(image, dtype=np.uint8)
@staticmethod
def merge_lineart_and_brush(brush_canvas, uploaded_file, size: tuple = (512, 512)) -> Image.Image:
if brush_canvas is None or uploaded_file is None:
return None
# Reload and process the original lineart image
with open(uploaded_file.name, "rb") as file_obj:
lineart_image = Image.open(file_obj).convert("L")
lineart_image = lineart_image.resize(size)
lineart_rgba = lineart_image.convert("RGBA")
processed_pixels = []
for pixel in lineart_rgba.getdata():
if pixel[0] > 240:
processed_pixels.append((255, 255, 255, 0))
else:
processed_pixels.append((0, 0, 0, 255))
lineart_rgba.putdata(processed_pixels)
brush_layer = Image.fromarray(brush_canvas["composite"]).convert("RGBA")
combined = Image.alpha_composite(brush_layer, lineart_rgba)
return combined
def generate_image(self, annotated_lineart: Image.Image,
num_inference_steps: int = 30) -> Image.Image:
if annotated_lineart is None:
raise ValueError("No annotated lineart provided!")
annotated_lineart = annotated_lineart.resize((512, 512))
refined_lineart = self.lineart_detector(annotated_lineart).convert("RGBA")
generator = torch.manual_seed(self.seed)
return self.pipe(
prompt="A colorful image and high resolution image",
image=refined_lineart,
num_inference_steps=num_inference_steps,
generator=generator,
negative_prompt="monochrome, desaturated, low contrast"
).images[0]