Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
from PIL import Image | |
from controlnet_aux import LineartDetector | |
from diffusers import ( | |
ControlNetModel, | |
StableDiffusionControlNetPipeline, | |
UniPCMultistepScheduler | |
) | |
class LineartGenerator: | |
def __init__(self, device: str = None, seed: int = 0): | |
self.device = device if device else ("cuda" if torch.cuda.is_available() else "cpu") | |
self.dtype = torch.float16 if self.device == "cuda" else torch.float32 | |
self.seed = seed | |
self._initialize_models() | |
def _initialize_models(self): | |
self.lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators") | |
checkpoint = "ControlNet-1-1-preview/control_v11p_sd15_lineart" | |
self.controlnet = ControlNetModel.from_pretrained(checkpoint) | |
self.pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=self.controlnet | |
) | |
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config) | |
self.pipe.to(self.device) | |
def load_lineart_image(uploaded_file, size: tuple = (512, 512)) -> np.ndarray: | |
if not uploaded_file: | |
return None | |
with open(uploaded_file.name, "rb") as file_obj: | |
image = Image.open(file_obj).convert("L") | |
image = image.resize(size) | |
return np.array(image, dtype=np.uint8) | |
def merge_lineart_and_brush(brush_canvas, uploaded_file, size: tuple = (512, 512)) -> Image.Image: | |
if brush_canvas is None or uploaded_file is None: | |
return None | |
# Reload and process the original lineart image | |
with open(uploaded_file.name, "rb") as file_obj: | |
lineart_image = Image.open(file_obj).convert("L") | |
lineart_image = lineart_image.resize(size) | |
lineart_rgba = lineart_image.convert("RGBA") | |
processed_pixels = [] | |
for pixel in lineart_rgba.getdata(): | |
if pixel[0] > 240: | |
processed_pixels.append((255, 255, 255, 0)) | |
else: | |
processed_pixels.append((0, 0, 0, 255)) | |
lineart_rgba.putdata(processed_pixels) | |
brush_layer = Image.fromarray(brush_canvas["composite"]).convert("RGBA") | |
combined = Image.alpha_composite(brush_layer, lineart_rgba) | |
return combined | |
def generate_image(self, annotated_lineart: Image.Image, | |
num_inference_steps: int = 30) -> Image.Image: | |
if annotated_lineart is None: | |
raise ValueError("No annotated lineart provided!") | |
annotated_lineart = annotated_lineart.resize((512, 512)) | |
refined_lineart = self.lineart_detector(annotated_lineart).convert("RGBA") | |
generator = torch.manual_seed(self.seed) | |
return self.pipe( | |
prompt="A colorful image and high resolution image", | |
image=refined_lineart, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
negative_prompt="monochrome, desaturated, low contrast" | |
).images[0] | |