from huggingface_hub import hf_hub_download import re from PIL import Image import gradio as gr from transformers import NougatProcessor, VisionEncoderDecoderModel from datasets import load_dataset import torch model_checkpoint = "facebook/nougat-base" processor = NougatProcessor.from_pretrained(model_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint) # Use GPU if possible device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # prepare PDF image for the model def predict(img): pixel_values = processor(img, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), min_length=1, max_new_tokens=30, bad_words_ids=[[processor.tokenizer.unk_token_id]], ) sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0] sequence = processor.post_process_generation(sequence, fix_markdown=False) return sequence image = gr.Image() text = ["text"] examples = ['page_10.jpg'] intf = gr.Interface(fn=predict, inputs=image, outputs=text, examples=examples) intf.launch(inline=False)