Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,047 Bytes
e371ddd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import os
import einops
import numpy as np
import torch
import torch.utils.checkpoint
from accelerate.utils import ProjectConfiguration, set_seed
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
import torchvision
import json
import cv2
from skimage.io import imsave
import matplotlib.pyplot as plt
# read .exr files for RTMV dataset
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a Zero123 training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default="lambdalabs/sd-image-variations-diffusers",
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help=(
"Revision of pretrained model identifier from huggingface.co/models. Trainable model components should be"
" float32 precision."
),
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=256,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--T_in", type=int, default=1, help="Number of input views"
)
parser.add_argument(
"--T_out", type=int, default=1, help="Number of output views"
)
parser.add_argument(
"--guidance_scale",
type=float,
default=3.0,
help="unconditional guidance scale, if guidance_scale>1.0, do_classifier_free_guidance"
)
parser.add_argument(
"--data_dir",
type=str,
default=".",
help=(
"The input data dir. Should contain the .png files (or other data files) for the task."
),
)
parser.add_argument(
"--data_type",
type=str,
default="GSO25",
help=(
"The input data type. Chosen from GSO25, GSO3D, GSO100, RTMV, NeRF, Franka, MVDream, Text2Img"
),
)
parser.add_argument(
"--cape_type",
type=str,
default="6DoF",
help=(
"The camera pose encoding CaPE type. Chosen from 4DoF, 6DoF"
),
)
parser.add_argument(
"--output_dir",
type=str,
default="logs_eval",
help=(
"The output directory where the model predictions and checkpoints will be written."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", default=True, help="Whether or not to use xformers."
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
if args.resolution % 8 != 0:
raise ValueError(
"`--resolution` must be divisible by 8 for consistently sized encoded images."
)
return args
# create angles in archimedean spiral with T_out number
import math
def get_archimedean_spiral(sphere_radius, num_steps=250):
# x-z plane, around upper y
'''
https://en.wikipedia.org/wiki/Spiral, section "Spherical spiral". c = a / pi
'''
a = 40
r = sphere_radius
translations = []
angles = []
# i = a / 2
i = 0.01
while i < a:
theta = i / a * math.pi
x = r * math.sin(theta) * math.cos(-i)
z = r * math.sin(-theta + math.pi) * math.sin(-i)
y = r * - math.cos(theta)
# translations.append((x, y, z)) # origin
translations.append((x, z, -y))
angles.append([np.rad2deg(-i), np.rad2deg(theta)])
# i += a / (2 * num_steps)
i += a / (1 * num_steps)
return np.array(translations), np.stack(angles)
# 36 views around the circle, with elevation degree
def get_circle_traj(sphere_radius, elevation=0, num_steps=36):
translations = []
angles = []
elevation = np.deg2rad(elevation)
for i in range(num_steps):
theta = i / num_steps * 2 * math.pi
x = sphere_radius * math.sin(theta) * math.cos(elevation)
z = sphere_radius * math.sin(-theta+math.pi) * math.sin(-elevation)
y = sphere_radius * -math.cos(theta)
translations.append((x, z, -y))
angles.append([np.rad2deg(-elevation), np.rad2deg(theta)])
return np.array(translations), np.stack(angles)
def look_at(origin, target, up):
forward = (target - origin)
forward = forward / np.linalg.norm(forward)
right = np.cross(up, forward)
right = right / np.linalg.norm(right)
new_up = np.cross(forward, right)
rotation_matrix = np.column_stack((right, new_up, -forward, target))
matrix = np.row_stack((rotation_matrix, [0, 0, 0, 1]))
return matrix
# from carvekit.api.high import HiInterface
# def create_carvekit_interface():
# # Check doc strings for more information
# interface = HiInterface(object_type="object", # Can be "object" or "hairs-like".
# batch_size_seg=5,
# batch_size_matting=1,
# device='cuda' if torch.cuda.is_available() else 'cpu',
# seg_mask_size=640, # Use 640 for Tracer B7 and 320 for U2Net
# matting_mask_size=2048,
# trimap_prob_threshold=231,
# trimap_dilation=30,
# trimap_erosion_iters=5,
# fp16=False)
#
# return interface
import rembg
def create_rembg_interface():
rembg_session = rembg.new_session()
return rembg_session
def main(args):
if args.seed is not None:
set_seed(args.seed)
CaPE_TYPE = args.cape_type
if CaPE_TYPE == "6DoF":
import sys
sys.path.insert(0, "./6DoF/")
# use the customized diffusers modules
from diffusers import DDIMScheduler
from dataset import get_pose
from CN_encoder import CN_encoder
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
elif CaPE_TYPE == "4DoF":
import sys
sys.path.insert(0, "./4DoF/")
# use the customized diffusers modules
from diffusers import DDIMScheduler
from dataset import get_pose
from CN_encoder import CN_encoder
from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
else:
raise ValueError("CaPE_TYPE must be chosen from 4DoF, 6DoF")
# from dataset import get_pose
# from CN_encoder import CN_encoder
# from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
DATA_DIR = args.data_dir
DATA_TYPE = args.data_type
if DATA_TYPE == "GSO25":
T_in_DATA_TYPE = "render_mvs_25" # same condition for GSO
T_out_DATA_TYPE = "render_mvs_25" # for 2D metrics
T_out = 25
elif DATA_TYPE == "GSO25_6dof":
T_in_DATA_TYPE = "render_6dof_25" # same condition for GSO
T_out_DATA_TYPE = "render_6dof_25" # for 2D metrics
T_out = 25
elif DATA_TYPE == "GSO3D":
T_in_DATA_TYPE = "render_mvs_25" # same condition for GSO
T_out_DATA_TYPE = "render_sync_36_single" # for 3D metrics
T_out = 36
elif DATA_TYPE == "GSO100":
T_in_DATA_TYPE = "render_mvs_25" # same condition for GSO
T_out_DATA_TYPE = "render_spiral_100" # for 360 gif
T_out = 100
elif DATA_TYPE == "NeRF":
T_out = 200
elif DATA_TYPE == "RTMV":
T_out = 20
elif DATA_TYPE == "Franka":
T_out = 100 # do a 360 gif
elif DATA_TYPE == "MVDream":
T_out = 100 # do a 360 gif
elif DATA_TYPE == "Text2Img":
T_out = 100 # do a 360 gif
elif DATA_TYPE == "dust3r":
# carvekit = create_carvekit_interface()
rembg_session = create_rembg_interface()
T_out = 50 # do a 360 gif
# get the number of .png files in the folder
obj_names = [f for f in os.listdir(DATA_DIR+"/user_object") if f.endswith('.png')]
args.T_in = len(obj_names)
else:
raise NotImplementedError
T_in = args.T_in
OUTPUT_DIR= f"logs_{CaPE_TYPE}/{DATA_TYPE}/N{T_in}M{T_out}"
os.makedirs(OUTPUT_DIR, exist_ok=True)
# get all folders in DATA_DIR
if DATA_TYPE == "Text2Img":
# get all rgba_png in DATA_DIR
obj_names = [f for f in os.listdir(DATA_DIR) if f.endswith('rgba.png')]
else:
obj_names = [f for f in os.listdir(DATA_DIR) if os.path.isdir(os.path.join(DATA_DIR, f))]
weight_dtype = torch.float16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
h, w = args.resolution, args.resolution
bg_color = [1., 1., 1., 1.]
radius = 2.2 #1.5 #1.8 # Objaverse training radius [1.5, 2.2]
# radius_4dof = np.pi * (np.log(radius) - np.log(1.5)) / (np.log(2.2)-np.log(1.5))
# Init Dataset
image_transforms = torchvision.transforms.Compose(
[
torchvision.transforms.Resize((args.resolution, args.resolution)), # 256, 256
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
]
)
# Init pipeline
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler",
revision=args.revision)
image_encoder = CN_encoder.from_pretrained(args.pretrained_model_name_or_path, subfolder="image_encoder", revision=args.revision)
pipeline = Zero1to3StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
revision=args.revision,
scheduler=scheduler,
image_encoder=None,
safety_checker=None,
feature_extractor=None,
torch_dtype=weight_dtype,
)
pipeline.image_encoder = image_encoder
pipeline = pipeline.to(device)
pipeline.set_progress_bar_config(disable=False)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
# enable vae slicing
pipeline.enable_vae_slicing()
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=device).manual_seed(args.seed)
for obj_name in tqdm(obj_names):
print(f"Processing {obj_name}")
if DATA_TYPE == "NeRF":
if os.path.exists(os.path.join(args.output_dir, obj_name, "output.gif")):
continue
# load train info
with open(os.path.join(DATA_DIR, obj_name, "transforms_train.json"), "r") as f:
train_info = json.load(f)["frames"]
# load test info
with open(os.path.join(DATA_DIR, obj_name, "transforms_test.json"), "r") as f:
test_info = json.load(f)["frames"]
# find the radius [min_t, max_t] of the object, we later scale it to training radius [1.5, 2.2]
max_t = 0
min_t = 100
for i in range(len(train_info)):
pose = np.array(train_info[i]["transform_matrix"]).reshape(4, 4)
translation = pose[:3, -1]
radii = np.linalg.norm(translation)
if max_t < radii:
max_t = radii
if min_t > radii:
min_t = radii
info_dir = os.path.join("metrics/NeRF_idx", obj_name)
assert os.path.exists(info_dir) # use fixed train index
train_index = np.load(os.path.join(info_dir, f"train_N{T_in}M20_random.npy"))
test_index = np.arange(len(test_info)) # use all test views
elif DATA_TYPE == "Franka":
angles_in = np.load(os.path.join(DATA_DIR, obj_name, "angles.npy")) # azimuth, elevation in radians
assert T_in <= len(angles_in)
total_index = np.arange(0, len(angles_in)) # num of input views
# random shuffle total_index
np.random.shuffle(total_index)
train_index = total_index[:T_in]
xyzs, angles_out = get_archimedean_spiral(radius, T_out)
origin = np.array([0, 0, 0])
up = np.array([0, 0, 1])
test_index = np.arange(len(angles_out)) # use all 100 test views
elif DATA_TYPE == "MVDream": # 4 input views front right back left
angles_in = []
for polar in [90]: # 1
for azimu in np.arange(0, 360, 90): # 4
angles_in.append(np.array([azimu, polar]))
assert T_in == len(angles_in)
xyzs, angles_out = get_archimedean_spiral(radius, T_out)
origin = np.array([0, 0, 0])
up = np.array([0, 0, 1])
train_index = np.arange(T_in)
test_index = np.arange(T_out)
elif DATA_TYPE == "Text2Img": # 1 input view
angles_in = []
angles_in.append(np.array([0, 90]))
assert T_in == len(angles_in)
xyzs, angles_out = get_archimedean_spiral(radius, T_out)
origin = np.array([0, 0, 0])
up = np.array([0, 0, 1])
train_index = np.arange(T_in)
test_index = np.arange(T_out)
elif DATA_TYPE == "dust3r":
# TODO full archimedean spiral traj
# xyzs, angles_out = get_archimedean_spiral(radius, T_out)
# TODO only top circle traj
xyzs, angles_out = get_archimedean_spiral(1.5, 100)
xyzs = xyzs[:T_out]
angles_out = angles_out[:T_out]
# # TODO circle traj
# xyzs, angles_out = get_circle_traj(radius, elevation=30, num_steps=T_out)
origin = np.array([0, 0, 0])
up = np.array([0, 0, 1])
train_index = np.arange(T_in)
test_index = np.arange(T_out)
# get the max_t
radii = np.load(os.path.join(DATA_DIR, obj_name, "radii.npy"))
max_t = np.max(radii)
min_t = np.min(radii)
else:
train_index = np.arange(T_in)
test_index = np.arange(T_out)
# prepare input img + pose, output pose
input_image = []
pose_in = []
pose_out = []
gt_image = []
for T_in_index in train_index:
if DATA_TYPE == "RTMV":
img_path = os.path.join(DATA_DIR, obj_name, '%05d.exr' % T_in_index)
input_im = cv2.imread(img_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
img = cv2.cvtColor(input_im, cv2.COLOR_BGR2RGB, input_im)
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.)).convert("RGB")
input_image.append(image_transforms(img))
# load input pose
pose_path = os.path.join(DATA_DIR, obj_name, '%05d.json' % T_in_index)
with open(pose_path, "r") as f:
pose_dict = json.load(f)
input_RT = np.array(pose_dict["camera_data"]["cam2world"]).T
input_RT = np.linalg.inv(input_RT)[:3]
pose_in.append(get_pose(np.concatenate([input_RT[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
else:
if DATA_TYPE == "NeRF":
img_path = os.path.join(DATA_DIR, obj_name, train_info[T_in_index]["file_path"] + ".png")
pose = np.array(train_info[T_in_index]["transform_matrix"])
if CaPE_TYPE == "6DoF":
# blender to opencv
pose[1:3, :] *= -1
pose = np.linalg.inv(pose)
# scale radius to [1.5, 2.2]
pose[:3, 3] *= 1. / max_t * radius
elif CaPE_TYPE == "4DoF":
pose = np.linalg.inv(pose)
pose_in.append(torch.from_numpy(get_pose(pose)))
elif DATA_TYPE == "Franka":
img_path = os.path.join(DATA_DIR, obj_name, "images_rgba", f"frame{T_in_index:06d}.png")
azimuth, elevation = np.rad2deg(angles_in[T_in_index])
print("input angles index", T_in_index, "azimuth", azimuth, "elevation", elevation)
if CaPE_TYPE == "4DoF":
pose_in.append(torch.from_numpy([np.deg2rad(90. - elevation), np.deg2rad(azimuth - 180), 0., 0.]))
elif CaPE_TYPE == "6DoF":
neg_i = np.deg2rad(azimuth - 180)
neg_theta = np.deg2rad(90. - elevation)
xyz = np.array([np.sin(neg_theta) * np.cos(neg_i),
np.sin(-neg_theta + np.pi) * np.sin(neg_i),
np.cos(neg_theta)]) * radius
pose = look_at(origin, xyz, up)
pose = np.linalg.inv(pose)
pose[2, :] *= -1
pose_in.append(torch.from_numpy(get_pose(pose)))
elif DATA_TYPE == "MVDream" or DATA_TYPE == "Text2Img":
if DATA_TYPE == "MVDream":
img_path = os.path.join(DATA_DIR, obj_name, f"{T_in_index}_rgba.png")
elif DATA_TYPE == "Text2Img":
img_path = os.path.join(DATA_DIR, obj_name)
azimuth, polar = angles_in[T_in_index]
if CaPE_TYPE == "4DoF":
pose_in.append(torch.tensor([np.deg2rad(polar), np.deg2rad(azimuth), 0., 0.]))
elif CaPE_TYPE == "6DoF":
neg_theta = np.deg2rad(polar)
neg_i = np.deg2rad(azimuth)
xyz = np.array([np.sin(neg_theta) * np.cos(neg_i),
np.sin(-neg_theta + np.pi) * np.sin(neg_i),
np.cos(neg_theta)]) * radius
pose = look_at(origin, xyz, up)
pose = np.linalg.inv(pose)
pose[2, :] *= -1
pose_in.append(torch.from_numpy(get_pose(pose)))
elif DATA_TYPE == "dust3r": # TODO get the object coordinate, now one of the camera is the center
img_path = os.path.join(DATA_DIR, obj_name, "%03d.png" % T_in_index)
pose = get_pose(np.linalg.inv(np.load(os.path.join(DATA_DIR, obj_name, "%03d.npy" % T_in_index))))
pose[1:3, :] *= -1
# scale radius to [1.5, 2.2]
pose[:3, 3] *= 1. / max_t * radius
pose_in.append(torch.from_numpy(pose))
else: # GSO
img_path = os.path.join(DATA_DIR, obj_name, T_in_DATA_TYPE, "model/%03d.png" % T_in_index)
pose_path = os.path.join(DATA_DIR, obj_name, T_in_DATA_TYPE, "model/%03d.npy" % T_in_index)
if T_in_DATA_TYPE == "render_mvs_25" or T_in_DATA_TYPE == "render_6dof_25": # blender coordinate
pose_in.append(get_pose(np.concatenate([np.load(pose_path)[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
else: # opencv coordinate
pose = get_pose(np.concatenate([np.load(pose_path)[:3, :], np.array([[0, 0, 0, 1]])], axis=0))
pose[1:3, :] *= -1 # pose out 36 is in opencv coordinate, pose in 25 is in blender coordinate
pose_in.append(torch.from_numpy(pose))
# pose_in.append(get_pose(np.concatenate([np.load(pose_path)[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
# load image
img = plt.imread(img_path)
if (img.shape[-1] == 3 or (img[:,:,-1] == 1).all()) and DATA_TYPE == "dust3r":
img_pil = Image.fromarray(np.uint8(img * 255.)).convert("RGB") # to PIL image
## use carvekit
# image_without_background = carvekit([img_pil])[0]
# image_without_background = np.array(image_without_background)
# est_seg = image_without_background > 127
# foreground = est_seg[:, :, -1].astype(np.bool_)
# img = np.concatenate([img[:,:,:3], foreground[:, :, np.newaxis]], axis=-1)
# use rembg
image = rembg.remove(img_pil, session=rembg_session)
foreground = np.array(image)[:,:,-1] > 127
img = np.concatenate([img[:,:,:3], foreground[:, :, np.newaxis]], axis=-1)
img[img[:, :, -1] == 0.] = bg_color
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.)).convert("RGB")
input_image.append(image_transforms(img))
for T_out_index in test_index:
if DATA_TYPE == "RTMV":
img_path = os.path.join(DATA_DIR, obj_name, '%05d.exr' % T_out_index)
gt_im = cv2.imread(img_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
img = cv2.cvtColor(gt_im, cv2.COLOR_BGR2RGB, gt_im)
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.)).convert("RGB")
gt_image.append(image_transforms(img))
# load pose
pose_path = os.path.join(DATA_DIR, obj_name, '%05d.json' % T_out_index)
with open(pose_path, "r") as f:
pose_dict = json.load(f)
output_RT = np.array(pose_dict["camera_data"]["cam2world"]).T
output_RT = np.linalg.inv(output_RT)[:3]
pose_out.append(get_pose(np.concatenate([output_RT[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
else:
if DATA_TYPE == "NeRF":
img_path = os.path.join(DATA_DIR, obj_name, test_info[T_out_index]["file_path"] + ".png")
pose = np.array(test_info[T_out_index]["transform_matrix"])
if CaPE_TYPE == "6DoF":
# blender to opencv
pose[1:3, :] *= -1
pose = np.linalg.inv(pose)
# scale radius to [1.5, 2.2]
pose[:3, 3] *= 1. / max_t * radius
elif CaPE_TYPE == "4DoF":
pose = np.linalg.inv(pose)
pose_out.append(torch.from_numpy(get_pose(pose)))
elif DATA_TYPE == "Franka":
img_path = None
azimuth, polar = angles_out[T_out_index]
if CaPE_TYPE == "4DoF":
pose_out.append(torch.from_numpy([np.deg2rad(polar), np.deg2rad(azimuth), 0., 0.]))
elif CaPE_TYPE == "6DoF":
pose = look_at(origin, xyzs[T_out_index], up)
neg_theta = np.deg2rad(polar)
neg_i = np.deg2rad(azimuth)
xyz = np.array([np.sin(neg_theta) * np.cos(neg_i),
np.sin(-neg_theta + np.pi) * np.sin(neg_i),
np.cos(neg_theta)]) * radius
assert np.allclose(xyzs[T_out_index], xyz)
pose = np.linalg.inv(pose)
pose[2, :] *= -1
pose_out.append(torch.from_numpy(get_pose(pose)))
elif DATA_TYPE == "MVDream" or DATA_TYPE == "Text2Img" or DATA_TYPE == "dust3r":
img_path = None
azimuth, polar = angles_out[T_out_index]
if CaPE_TYPE == "4DoF":
pose_out.append(torch.tensor([np.deg2rad(polar), np.deg2rad(azimuth), 0., 0.]))
elif CaPE_TYPE == "6DoF":
pose = look_at(origin, xyzs[T_out_index], up)
pose = np.linalg.inv(pose)
pose[2, :] *= -1
pose_out.append(torch.from_numpy(get_pose(pose)))
else: # GSO
img_path = os.path.join(DATA_DIR, obj_name, T_out_DATA_TYPE, "model/%03d.png" % T_out_index)
pose_path = os.path.join(DATA_DIR, obj_name, T_out_DATA_TYPE, "model/%03d.npy" % T_out_index)
if T_out_DATA_TYPE == "render_mvs_25" or T_out_DATA_TYPE == "render_6dof_25": # blender coordinate
pose_out.append(get_pose(np.concatenate([np.load(pose_path)[:3, :], np.array([[0, 0, 0, 1]])], axis=0)))
else: # opencv coordinate
pose = get_pose(np.concatenate([np.load(pose_path)[:3, :], np.array([[0, 0, 0, 1]])], axis=0))
pose[1:3, :] *= -1 # pose out 36 is in opencv coordinate, pose in 25 is in blender coordinate
pose_out.append(torch.from_numpy(pose))
# load image
if img_path is not None: # sometimes don't have GT target view image
img = plt.imread(img_path)
img[img[:, :, -1] == 0.] = bg_color
img = Image.fromarray(np.uint8(img[:, :, :3] * 255.)).convert("RGB")
gt_image.append(image_transforms(img))
# [B, T, C, H, W]
input_image = torch.stack(input_image, dim=0).to(device).to(weight_dtype).unsqueeze(0)
if len(gt_image)>0:
gt_image = torch.stack(gt_image, dim=0).to(device).to(weight_dtype).unsqueeze(0)
# [B, T, 4]
pose_in = np.stack(pose_in)
pose_out = np.stack(pose_out)
if CaPE_TYPE == "6DoF":
pose_in_inv = np.linalg.inv(pose_in).transpose([0, 2, 1])
pose_out_inv = np.linalg.inv(pose_out).transpose([0, 2, 1])
pose_in_inv = torch.from_numpy(pose_in_inv).to(device).to(weight_dtype).unsqueeze(0)
pose_out_inv = torch.from_numpy(pose_out_inv).to(device).to(weight_dtype).unsqueeze(0)
pose_in = torch.from_numpy(pose_in).to(device).to(weight_dtype).unsqueeze(0)
pose_out = torch.from_numpy(pose_out).to(device).to(weight_dtype).unsqueeze(0)
input_image = einops.rearrange(input_image, "b t c h w -> (b t) c h w")
if len(gt_image)>0:
gt_image = einops.rearrange(gt_image, "b t c h w -> (b t) c h w")
assert T_in == input_image.shape[0]
assert T_in == pose_in.shape[1]
assert T_out == pose_out.shape[1]
# run inference
if CaPE_TYPE == "6DoF":
with torch.autocast("cuda"):
image = pipeline(input_imgs=input_image, prompt_imgs=input_image, poses=[[pose_out, pose_out_inv], [pose_in, pose_in_inv]],
height=h, width=w, T_in=T_in, T_out=T_out,
guidance_scale=args.guidance_scale, num_inference_steps=50, generator=generator,
output_type="numpy").images
elif CaPE_TYPE == "4DoF":
with torch.autocast("cuda"):
image = pipeline(input_imgs=input_image, prompt_imgs=input_image, poses=[pose_out, pose_in],
height=h, width=w, T_in=T_in, T_out=T_out,
guidance_scale=args.guidance_scale, num_inference_steps=50, generator=generator,
output_type="numpy").images
# save results
output_dir = os.path.join(OUTPUT_DIR, obj_name)
os.makedirs(output_dir, exist_ok=True)
# save input image for visualization
imsave(os.path.join(output_dir, 'input.png'),
((np.concatenate(input_image.permute(0, 2, 3, 1).cpu().numpy(), 1) + 1) / 2 * 255).astype(np.uint8))
# save output image
if T_out >= 30:
# save to N imgs
for i in range(T_out):
imsave(os.path.join(output_dir, f'{i}.png'), (image[i] * 255).astype(np.uint8))
# make a gif
frames = [Image.fromarray((image[i] * 255).astype(np.uint8)) for i in range(T_out)]
frame_one = frames[0]
frame_one.save(os.path.join(output_dir, "output.gif"), format="GIF", append_images=frames,
save_all=True, duration=50, loop=1)
else:
imsave(os.path.join(output_dir, '0.png'), (np.concatenate(image, 1) * 255).astype(np.uint8))
# save gt for visualization
if len(gt_image)>0:
imsave(os.path.join(output_dir, 'gt.png'),
((np.concatenate(gt_image.permute(0, 2, 3, 1).cpu().numpy(), 1) + 1) / 2 * 255).astype(np.uint8))
if __name__ == "__main__":
args = parse_args()
main(args)
|