EscherNet / 6DoF /diffusers /pipelines /stable_diffusion /pipeline_flax_stable_diffusion.py
kxic's picture
Upload folder using huggingface_hub
e371ddd verified
raw
history blame
20.9 kB
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from functools import partial
from typing import Dict, List, Optional, Union
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict
from flax.jax_utils import unreplicate
from flax.training.common_utils import shard
from packaging import version
from PIL import Image
from transformers import CLIPImageProcessor, CLIPTokenizer, FlaxCLIPTextModel
from ...models import FlaxAutoencoderKL, FlaxUNet2DConditionModel
from ...schedulers import (
FlaxDDIMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
)
from ...utils import deprecate, logging, replace_example_docstring
from ..pipeline_flax_utils import FlaxDiffusionPipeline
from . import FlaxStableDiffusionPipelineOutput
from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
# Set to True to use python for loop instead of jax.fori_loop for easier debugging
DEBUG = False
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import jax
>>> import numpy as np
>>> from flax.jax_utils import replicate
>>> from flax.training.common_utils import shard
>>> from diffusers import FlaxStableDiffusionPipeline
>>> pipeline, params = FlaxStableDiffusionPipeline.from_pretrained(
... "runwayml/stable-diffusion-v1-5", revision="bf16", dtype=jax.numpy.bfloat16
... )
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> prng_seed = jax.random.PRNGKey(0)
>>> num_inference_steps = 50
>>> num_samples = jax.device_count()
>>> prompt = num_samples * [prompt]
>>> prompt_ids = pipeline.prepare_inputs(prompt)
# shard inputs and rng
>>> params = replicate(params)
>>> prng_seed = jax.random.split(prng_seed, jax.device_count())
>>> prompt_ids = shard(prompt_ids)
>>> images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images
>>> images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
```
"""
class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion.
This model inherits from [`FlaxDiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`FlaxAutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`FlaxCLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.FlaxCLIPTextModel),
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`FlaxUNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or
[`FlaxDPMSolverMultistepScheduler`].
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
def __init__(
self,
vae: FlaxAutoencoderKL,
text_encoder: FlaxCLIPTextModel,
tokenizer: CLIPTokenizer,
unet: FlaxUNet2DConditionModel,
scheduler: Union[
FlaxDDIMScheduler, FlaxPNDMScheduler, FlaxLMSDiscreteScheduler, FlaxDPMSolverMultistepScheduler
],
safety_checker: FlaxStableDiffusionSafetyChecker,
feature_extractor: CLIPImageProcessor,
dtype: jnp.dtype = jnp.float32,
):
super().__init__()
self.dtype = dtype
if safety_checker is None:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
def prepare_inputs(self, prompt: Union[str, List[str]]):
if not isinstance(prompt, (str, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="np",
)
return text_input.input_ids
def _get_has_nsfw_concepts(self, features, params):
has_nsfw_concepts = self.safety_checker(features, params)
return has_nsfw_concepts
def _run_safety_checker(self, images, safety_model_params, jit=False):
# safety_model_params should already be replicated when jit is True
pil_images = [Image.fromarray(image) for image in images]
features = self.feature_extractor(pil_images, return_tensors="np").pixel_values
if jit:
features = shard(features)
has_nsfw_concepts = _p_get_has_nsfw_concepts(self, features, safety_model_params)
has_nsfw_concepts = unshard(has_nsfw_concepts)
safety_model_params = unreplicate(safety_model_params)
else:
has_nsfw_concepts = self._get_has_nsfw_concepts(features, safety_model_params)
images_was_copied = False
for idx, has_nsfw_concept in enumerate(has_nsfw_concepts):
if has_nsfw_concept:
if not images_was_copied:
images_was_copied = True
images = images.copy()
images[idx] = np.zeros(images[idx].shape, dtype=np.uint8) # black image
if any(has_nsfw_concepts):
warnings.warn(
"Potential NSFW content was detected in one or more images. A black image will be returned"
" instead. Try again with a different prompt and/or seed."
)
return images, has_nsfw_concepts
def _generate(
self,
prompt_ids: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int,
height: int,
width: int,
guidance_scale: float,
latents: Optional[jnp.array] = None,
neg_prompt_ids: Optional[jnp.array] = None,
):
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
# get prompt text embeddings
prompt_embeds = self.text_encoder(prompt_ids, params=params["text_encoder"])[0]
# TODO: currently it is assumed `do_classifier_free_guidance = guidance_scale > 1.0`
# implement this conditional `do_classifier_free_guidance = guidance_scale > 1.0`
batch_size = prompt_ids.shape[0]
max_length = prompt_ids.shape[-1]
if neg_prompt_ids is None:
uncond_input = self.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="np"
).input_ids
else:
uncond_input = neg_prompt_ids
negative_prompt_embeds = self.text_encoder(uncond_input, params=params["text_encoder"])[0]
context = jnp.concatenate([negative_prompt_embeds, prompt_embeds])
# Ensure model output will be `float32` before going into the scheduler
guidance_scale = jnp.array([guidance_scale], dtype=jnp.float32)
latents_shape = (
batch_size,
self.unet.config.in_channels,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if latents is None:
latents = jax.random.normal(prng_seed, shape=latents_shape, dtype=jnp.float32)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
def loop_body(step, args):
latents, scheduler_state = args
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
latents_input = jnp.concatenate([latents] * 2)
t = jnp.array(scheduler_state.timesteps, dtype=jnp.int32)[step]
timestep = jnp.broadcast_to(t, latents_input.shape[0])
latents_input = self.scheduler.scale_model_input(scheduler_state, latents_input, t)
# predict the noise residual
noise_pred = self.unet.apply(
{"params": params["unet"]},
jnp.array(latents_input),
jnp.array(timestep, dtype=jnp.int32),
encoder_hidden_states=context,
).sample
# perform guidance
noise_pred_uncond, noise_prediction_text = jnp.split(noise_pred, 2, axis=0)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents, scheduler_state = self.scheduler.step(scheduler_state, noise_pred, t, latents).to_tuple()
return latents, scheduler_state
scheduler_state = self.scheduler.set_timesteps(
params["scheduler"], num_inference_steps=num_inference_steps, shape=latents.shape
)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * params["scheduler"].init_noise_sigma
if DEBUG:
# run with python for loop
for i in range(num_inference_steps):
latents, scheduler_state = loop_body(i, (latents, scheduler_state))
else:
latents, _ = jax.lax.fori_loop(0, num_inference_steps, loop_body, (latents, scheduler_state))
# scale and decode the image latents with vae
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.apply({"params": params["vae"]}, latents, method=self.vae.decode).sample
image = (image / 2 + 0.5).clip(0, 1).transpose(0, 2, 3, 1)
return image
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt_ids: jnp.array,
params: Union[Dict, FrozenDict],
prng_seed: jax.random.KeyArray,
num_inference_steps: int = 50,
height: Optional[int] = None,
width: Optional[int] = None,
guidance_scale: Union[float, jnp.array] = 7.5,
latents: jnp.array = None,
neg_prompt_ids: jnp.array = None,
return_dict: bool = True,
jit: bool = False,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide the image generation.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
latents (`jnp.array`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. tensor will ge generated
by sampling using the supplied random `generator`.
jit (`bool`, defaults to `False`):
Whether to run `pmap` versions of the generation and safety scoring functions. NOTE: This argument
exists because `__call__` is not yet end-to-end pmap-able. It will be removed in a future release.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] instead of
a plain tuple.
Examples:
Returns:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.FlaxStableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a
`tuple. When returning a tuple, the first element is a list with the generated images, and the second
element is a list of `bool`s denoting whether the corresponding generated image likely represents
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
if isinstance(guidance_scale, float):
# Convert to a tensor so each device gets a copy. Follow the prompt_ids for
# shape information, as they may be sharded (when `jit` is `True`), or not.
guidance_scale = jnp.array([guidance_scale] * prompt_ids.shape[0])
if len(prompt_ids.shape) > 2:
# Assume sharded
guidance_scale = guidance_scale[:, None]
if jit:
images = _p_generate(
self,
prompt_ids,
params,
prng_seed,
num_inference_steps,
height,
width,
guidance_scale,
latents,
neg_prompt_ids,
)
else:
images = self._generate(
prompt_ids,
params,
prng_seed,
num_inference_steps,
height,
width,
guidance_scale,
latents,
neg_prompt_ids,
)
if self.safety_checker is not None:
safety_params = params["safety_checker"]
images_uint8_casted = (images * 255).round().astype("uint8")
num_devices, batch_size = images.shape[:2]
images_uint8_casted = np.asarray(images_uint8_casted).reshape(num_devices * batch_size, height, width, 3)
images_uint8_casted, has_nsfw_concept = self._run_safety_checker(images_uint8_casted, safety_params, jit)
images = np.asarray(images)
# block images
if any(has_nsfw_concept):
for i, is_nsfw in enumerate(has_nsfw_concept):
if is_nsfw:
images[i] = np.asarray(images_uint8_casted[i])
images = images.reshape(num_devices, batch_size, height, width, 3)
else:
images = np.asarray(images)
has_nsfw_concept = False
if not return_dict:
return (images, has_nsfw_concept)
return FlaxStableDiffusionPipelineOutput(images=images, nsfw_content_detected=has_nsfw_concept)
# Static argnums are pipe, num_inference_steps, height, width. A change would trigger recompilation.
# Non-static args are (sharded) input tensors mapped over their first dimension (hence, `0`).
@partial(
jax.pmap,
in_axes=(None, 0, 0, 0, None, None, None, 0, 0, 0),
static_broadcasted_argnums=(0, 4, 5, 6),
)
def _p_generate(
pipe,
prompt_ids,
params,
prng_seed,
num_inference_steps,
height,
width,
guidance_scale,
latents,
neg_prompt_ids,
):
return pipe._generate(
prompt_ids,
params,
prng_seed,
num_inference_steps,
height,
width,
guidance_scale,
latents,
neg_prompt_ids,
)
@partial(jax.pmap, static_broadcasted_argnums=(0,))
def _p_get_has_nsfw_concepts(pipe, features, params):
return pipe._get_has_nsfw_concepts(features, params)
def unshard(x: jnp.ndarray):
# einops.rearrange(x, 'd b ... -> (d b) ...')
num_devices, batch_size = x.shape[:2]
rest = x.shape[2:]
return x.reshape(num_devices * batch_size, *rest)