kxic commited on
Commit
c35ceb4
·
verified ·
1 Parent(s): d52d663

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. gradio_demo/gradio_demo.py +11 -31
gradio_demo/gradio_demo.py CHANGED
@@ -15,7 +15,7 @@ import cv2
15
  import matplotlib.pyplot as pl
16
  pl.ion()
17
 
18
-
19
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
20
  weight_dtype = torch.float16
21
  torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
@@ -60,37 +60,17 @@ def look_at(origin, target, up):
60
  matrix = np.row_stack((rotation_matrix, [0, 0, 0, 1]))
61
  return matrix
62
 
63
- CaPE_TYPE = "6DoF"
64
  import einops
65
- if CaPE_TYPE == "6DoF":
66
- import sys
67
-
68
- sys.path.insert(0, "./6DoF/")
69
- # use the customized diffusers modules
70
- from diffusers import DDIMScheduler
71
- from dataset import get_pose
72
- from CN_encoder import CN_encoder
73
- from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
74
-
75
- elif CaPE_TYPE == "4DoF":
76
- import sys
77
-
78
- sys.path.insert(0, "./4DoF/")
79
- # use the customized diffusers modules
80
- from diffusers import DDIMScheduler
81
- from dataset import get_pose
82
- from CN_encoder import CN_encoder
83
- from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
84
- else:
85
- raise ValueError("CaPE_TYPE must be chosen from 4DoF, 6DoF")
86
-
87
- # from eschernet.diffusers import DDIMScheduler
88
- # from eschernet.dataset import get_pose
89
- # from eschernet.CN_encoder import CN_encoder
90
- # from eschernet.pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
91
-
92
-
93
- pretrained_model_name_or_path = "XY-Xin/N3M3B112G6_6dof_36k" # TODO
94
  resolution = 256
95
  h,w = resolution,resolution
96
  guidance_scale = 3.0
 
15
  import matplotlib.pyplot as pl
16
  pl.ion()
17
 
18
+ CaPE_TYPE = "6DoF"
19
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
20
  weight_dtype = torch.float16
21
  torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
 
60
  matrix = np.row_stack((rotation_matrix, [0, 0, 0, 1]))
61
  return matrix
62
 
 
63
  import einops
64
+ import sys
65
+
66
+ sys.path.insert(0, "./6DoF/")
67
+ # use the customized diffusers modules
68
+ from diffusers import DDIMScheduler
69
+ from dataset import get_pose
70
+ from CN_encoder import CN_encoder
71
+ from pipeline_zero1to3 import Zero1to3StableDiffusionPipeline
72
+
73
+ pretrained_model_name_or_path = "kxic/EscherNet_demo" # TODO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
  resolution = 256
75
  h,w = resolution,resolution
76
  guidance_scale = 3.0