import torch.nn as nn import torch.nn.functional as F class ConvBnReLU(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, pad=1, norm_act=nn.BatchNorm2d): super(ConvBnReLU, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=stride, padding=pad, bias=False) self.bn = norm_act(out_channels) self.relu = nn.ReLU(inplace=True) def forward(self, x): return self.relu(self.bn(self.conv(x))) class FeatureNet(nn.Module): def __init__(self, norm_act=nn.BatchNorm2d): super(FeatureNet, self).__init__() self.conv0 = nn.Sequential(ConvBnReLU(3, 8, 3, 1, 1, norm_act=norm_act), ConvBnReLU(8, 8, 3, 1, 1, norm_act=norm_act)) self.conv1 = nn.Sequential(ConvBnReLU(8, 16, 5, 2, 2, norm_act=norm_act), ConvBnReLU(16, 16, 3, 1, 1, norm_act=norm_act)) self.conv2 = nn.Sequential(ConvBnReLU(16, 32, 5, 2, 2, norm_act=norm_act), ConvBnReLU(32, 32, 3, 1, 1, norm_act=norm_act)) self.toplayer = nn.Conv2d(32, 32, 1) self.lat1 = nn.Conv2d(16, 32, 1) self.lat0 = nn.Conv2d(8, 32, 1) self.smooth1 = nn.Conv2d(32, 16, 3, padding=1) self.smooth0 = nn.Conv2d(32, 8, 3, padding=1) def _upsample_add(self, x, y): return F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) + y def forward(self, x): conv0 = self.conv0(x) conv1 = self.conv1(conv0) conv2 = self.conv2(conv1) feat2 = self.toplayer(conv2) feat1 = self._upsample_add(feat2, self.lat1(conv1)) feat0 = self._upsample_add(feat1, self.lat0(conv0)) feat1 = self.smooth1(feat1) feat0 = self.smooth0(feat0) return feat2, feat1, feat0