Spaces:
Runtime error
Runtime error
File size: 1,686 Bytes
de947e8 f495277 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import os
from models import Noise2Same
import gradio as gr
os.system("mkdir trained_models/denoising_ImageNet")
os.system("cd trained_models/denoising_ImageNet; gdown https://drive.google.com/uc?id=1asrwULW1lDFasystBc3UfShh5EeTHpkW; gdown https://drive.google.com/uc?id=1Re1ER7KtujBunN0-74QmYrrOx77WpVXK; gdown https://drive.google.com/uc?id=1QdlyUPUKyyGtqD0zBrj5F7qQZtmUELSu; gdown https://drive.google.com/uc?id=1LQsYR26ldHebcdQtP2zt4Mh-ZH9vXQ2S; gdown https://drive.google.com/uc?id=1AxTDD4dS0DtzmBywjGyeJYgDrw-XjYbc; gdown https://drive.google.com/uc?id=1w4UdNAbOjvWSL0Jgbq8_hCniaxqsbLaQ; cd ../..")
os.system("wget -O arch.png https://i.imgur.com/NruRABn.png")
os.system("wget -O parrot.png https://i.imgur.com/zdji3xv.png")
os.system("wget -O lion.png https://i.imgur.com/qNT0lJJ.png")
model = Noise2Same('trained_models/', 'denoising_ImageNet', dim=2, in_channels=3)
def norm(x):
x = (x-x.min())/(x.max()-x.min())
return x
def predict(img):
pred = model.predict(img.astype('float32'))
return norm(pred)
img = gr.inputs.Image()
title = "Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising"
description = "Interactive demo of Noise2Same, an image denoising method developed by Yaochen Xie"
denoise = gr.Interface(fn=predict,
inputs=gr.Image(placeholder="Drag image here.", label='Input Image'),
outputs=gr.Image(placeholder="Output image will appear here.", label='Input Image'),
examples=[["lion.png"], ["arch.png"], ["parrot.png"]],
title=title, description=description)
#launching the app
if __name__ == "__main__":
denoise.launch(debug=True) |