Spaces:
Runtime error
Runtime error
File size: 14,802 Bytes
de947e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
import os, cv2
import numpy as np
from network_configure import conf_unet
from network import *
from utils.predict_utils import get_coord, PercentileNormalizer, PadAndCropResizer
from utils.train_utils import augment_patch
from utils import train_utils
# UNet implementation inherited from GVTNets: https://github.com/zhengyang-wang/GVTNets
training_config = {'base_learning_rate': 0.0004,
'lr_decay_steps':5e3,
'lr_decay_rate':0.5,
'lr_staircase':True}
class Noise2Same(object):
def __init__(self, base_dir, name,
dim=2, in_channels=1, lmbd=None,
masking='gaussian', mask_perc=0.5,
opt_config=training_config, **kwargs):
self.base_dir = base_dir # model direction
self.name = name # model name
self.dim = dim # image dimension
self.in_channels = in_channels # image channels
self.lmbd = lmbd # lambda in loss fn
self.masking = masking
self.mask_perc = mask_perc
self.opt_config = opt_config
conf_unet['dimension'] = '%dD'%dim
self.net = UNet(conf_unet)
def _model_fn(self, features, labels, mode):
conv_op = convolution_2D if self.dim==2 else convolution_3D
axis = {3:[1,2,3,4], 2:[1,2,3]}[self.dim]
def image_summary(img):
return tf.reduce_max(img, axis=1) if self.dim == 3 else img
# Local average excluding the center pixel (donut)
def mask_kernel(features):
kernel = (np.array([[0.5, 1.0, 0.5], [1.0, 0.0, 1.0], [0.5, 1.0, 0.5]])
if self.dim == 2 else
np.array([[[0, 0.5, 0], [0.5, 1.0, 0.5], [0, 0.5, 0]],
[[0.5, 1.0, 0.5], [1.0, 0.0, 1.0], [0.5, 1.0, 0.5]],
[[0, 0.5, 0], [0.5, 1.0, 0.5], [0, 0.5, 0]]]))
kernel = (kernel/kernel.sum())
kernels = np.empty([3, 3, self.in_channels, self.in_channels])
for i in range(self.in_channels):
kernels[:,:,i,i] = kernel
nn_conv_op = tf.nn.conv2d if self.dim == 2 else tf.nn.conv3d
return nn_conv_op(features, tf.constant(kernels.astype('float32')),
[1]*self.dim+[1,1], padding='SAME')
if not mode == tf.estimator.ModeKeys.PREDICT:
noise, mask = tf.split(labels, [self.in_channels, self.in_channels], -1)
if self.masking == 'gaussian':
masked_features = (1 - mask) * features + mask * noise
elif self.masking == 'donut':
masked_features = (1 - mask) * features + mask * mask_kernel(features)
else:
raise NotImplementedError
# Prediction from masked input
with tf.variable_scope('main_unet', reuse=tf.compat.v1.AUTO_REUSE):
out = self.net(masked_features, mode == tf.estimator.ModeKeys.TRAIN)
out = batch_norm(out, mode == tf.estimator.ModeKeys.TRAIN, 'unet_out')
out = relu(out)
preds = conv_op(out, self.in_channels, 1, 1, False, name = 'out_conv')
# Prediction from full input
with tf.variable_scope('main_unet', reuse=tf.compat.v1.AUTO_REUSE):
rawout = self.net(features, mode == tf.estimator.ModeKeys.TRAIN)
rawout = batch_norm(rawout, mode == tf.estimator.ModeKeys.TRAIN, 'unet_out')
rawout = relu(rawout)
rawpreds = conv_op(rawout, self.in_channels, 1, 1, False, name = 'out_conv')
# Loss components
rec_mse = tf.reduce_mean(tf.square(rawpreds - features), axis=None)
inv_mse = tf.reduce_sum(tf.square(rawpreds - preds) * mask) / tf.reduce_sum(mask)
bsp_mse = tf.reduce_sum(tf.square(features - preds) * mask) / tf.reduce_sum(mask)
# Tensorboard display
tf.summary.image('1_inputs', image_summary(features), max_outputs=3)
tf.summary.image('2_raw_predictions', image_summary(rawpreds), max_outputs=3)
tf.summary.image('3_mask', image_summary(mask), max_outputs=3)
tf.summary.image('4_masked_predictions', image_summary(preds), max_outputs=3)
tf.summary.image('5_difference', image_summary(rawpreds-preds), max_outputs=3)
tf.summary.image('6_rec_error', image_summary(preds-features), max_outputs=3)
tf.summary.scalar('reconstruction', rec_mse, family='loss_metric')
tf.summary.scalar('invariance', inv_mse, family='loss_metric')
tf.summary.scalar('blind_spot', bsp_mse, family='loss_metric')
else:
with tf.variable_scope('main_unet'):
out = self.net(features, mode == tf.estimator.ModeKeys.TRAIN)
out = batch_norm(out, mode == tf.estimator.ModeKeys.TRAIN, 'unet_out')
out = relu(out)
preds = conv_op(out, self.in_channels, 1, 1, False, name = 'out_conv')
return tf.estimator.EstimatorSpec(mode=mode, predictions=preds)
lmbd = 2 if self.lmbd is None else self.lmbd
loss = rec_mse + lmbd*tf.sqrt(inv_mse)
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
learning_rate = tf.train.exponential_decay(self.opt_config['base_learning_rate'],
global_step,
self.opt_config['lr_decay_steps'],
self.opt_config['lr_decay_rate'],
self.opt_config['lr_staircase'])
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope='main_unet')
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(loss, global_step)
else:
train_op = None
metrics = {'loss_metric/invariance':tf.metrics.mean(inv_mse),
'loss_metric/blind_spot':tf.metrics.mean(bsp_mse),
'loss_metric/reconstruction':tf.metrics.mean(rec_mse)}
return tf.estimator.EstimatorSpec(mode=mode, predictions=preds, loss=loss, train_op=train_op,
eval_metric_ops=metrics)
def _input_fn(self, sources, patch_size, batch_size, is_train=True):
# Stratified sampling inherited from Noise2Void: https://github.com/juglab/n2v
get_stratified_coords = getattr(train_utils, 'get_stratified_coords%dD'%self.dim)
rand_float_coords = getattr(train_utils, 'rand_float_coords%dD'%self.dim)
def generator():
while(True):
source = sources[np.random.randint(len(sources))]
valid_shape = source.shape[:-1] - np.array(patch_size)
if any([s<=0 for s in valid_shape]):
source_patch = augment_patch(source)
else:
coords = [np.random.randint(0, shape_i+1) for shape_i in valid_shape]
s = tuple([slice(coord, coord+size) for coord, size in zip(coords, patch_size)])
source_patch = augment_patch(source[s])
mask = np.zeros_like(source_patch)
for c in range(self.in_channels):
boxsize = np.round(np.sqrt(100/self.mask_perc)).astype(np.int)
maskcoords = get_stratified_coords(rand_float_coords(boxsize),
box_size=boxsize, shape=tuple(patch_size))
indexing = maskcoords + (c,)
mask[indexing] = 1.0
noise_patch = np.concatenate([np.random.normal(0, 0.2, source_patch.shape), mask], axis=-1)
yield source_patch, noise_patch
def generator_val():
for idx in range(len(sources)):
source_patch = sources[idx]
patch_size = source_patch.shape[:-1]
boxsize = np.round(np.sqrt(100/self.mask_perc)).astype(np.int)
maskcoords = get_stratified_coords(rand_float_coords(boxsize),
box_size=boxsize, shape=tuple(patch_size))
indexing = maskcoords + (0,)
mask = np.zeros_like(source_patch)
mask[indexing] = 1.0
noise_patch = np.concatenate([np.random.normal(0, 0.2, source_patch.shape), mask], axis=-1)
yield source_patch, noise_patch
output_types = (tf.float32, tf.float32)
output_shapes = (tf.TensorShape(list(patch_size) + [self.in_channels]),
tf.TensorShape(list(patch_size) + [self.in_channels*2]))
gen = generator if is_train else generator_val
dataset = tf.data.Dataset.from_generator(gen, output_types=output_types, output_shapes=output_shapes)
dataset = dataset.batch(batch_size).prefetch(tf.data.experimental.AUTOTUNE)
return dataset
def train(self, source_lst, patch_size, validation=None, batch_size=64, save_steps=1000, log_steps=200, steps=50000):
assert len(patch_size)==self.dim
assert len(source_lst[0].shape)==self.dim + 1
assert source_lst[0].shape[-1]==self.in_channels
ses_config = tf.ConfigProto()
ses_config.gpu_options.allow_growth = True
run_config = tf.estimator.RunConfig(model_dir=self.base_dir+'/'+self.name,
save_checkpoints_steps=save_steps,
session_config=ses_config,
log_step_count_steps=log_steps,
save_summary_steps=log_steps,
keep_checkpoint_max=2)
estimator = tf.estimator.Estimator(model_fn=self._model_fn,
model_dir=self.base_dir+'/'+self.name,
config=run_config)
input_fn = lambda: self._input_fn(source_lst, patch_size, batch_size=batch_size)
if validation is not None:
train_spec = tf.estimator.TrainSpec(input_fn=input_fn, max_steps=steps)
val_input_fn = lambda: self._input_fn(validation.astype('float32'),
validation.shape[1:-1],
batch_size=4,
is_train=False)
eval_spec = tf.estimator.EvalSpec(input_fn=val_input_fn, throttle_secs=120)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
else:
estimator.train(input_fn=input_fn, steps=steps)
# Used for single image prediction
def predict(self, image, resizer=PadAndCropResizer(), checkpoint_path=None,
im_mean=None, im_std=None):
tf.logging.set_verbosity(tf.logging.ERROR)
estimator = tf.estimator.Estimator(model_fn=self._model_fn,
model_dir=self.base_dir+'/'+self.name)
im_mean, im_std = ((image.mean(), image.std()) if im_mean is None or im_std is None else (im_mean, im_std))
image = (image - im_mean)/im_std
if self.in_channels == 1:
image = resizer.before(image, 2 ** (self.net.depth), exclude=None)
input_fn = tf.estimator.inputs.numpy_input_fn(x=image[None, ..., None], batch_size=1, num_epochs=1, shuffle=False)
image = list(estimator.predict(input_fn=input_fn, checkpoint_path=checkpoint_path))[0][..., 0]
image = resizer.after(image, exclude=None)
else:
image = resizer.before(image, 2 ** (self.net.depth), exclude=-1)
input_fn = tf.estimator.inputs.numpy_input_fn(x=image[None], batch_size=1, num_epochs=1, shuffle=False)
image = list(estimator.predict(input_fn=input_fn, checkpoint_path=checkpoint_path))[0]
image = resizer.after(image, exclude=-1)
image = image*im_std + im_mean
return image
# Used for batch images prediction
def batch_predict(self, images, resizer=PadAndCropResizer(), checkpoint_path=None,
im_mean=None, im_std=None, batch_size=32):
tf.logging.set_verbosity(tf.logging.ERROR)
estimator = tf.estimator.Estimator(model_fn=self._model_fn,
model_dir=self.base_dir+'/'+self.name)
im_mean, im_std = ((images.mean(), images.std()) if im_mean is None or im_std is None else (im_mean, im_std))
images = (images - im_mean)/im_std
images = resizer.before(images, 2 ** (self.net.depth), exclude=0)
input_fn = tf.estimator.inputs.numpy_input_fn(x=images[ ..., None], batch_size=batch_size, num_epochs=1, shuffle=False)
images = np.stack(list(estimator.predict(input_fn=input_fn, checkpoint_path=checkpoint_path)))[..., 0]
images = resizer.after(images, exclude=0)
images = images*im_std + im_mean
return images
# Used for extremely large input images
def crop_predict(self, image, size, margin, resizer=PadAndCropResizer(), checkpoint_path=None,
im_mean=None, im_std=None):
tf.logging.set_verbosity(tf.logging.ERROR)
estimator = tf.estimator.Estimator(model_fn=self._model_fn,
model_dir=self.base_dir+'/'+self.name)
im_mean, im_std = ((image.mean(), image.std()) if im_mean is None or im_std is None else (im_mean, im_std))
image = (image - im_mean)/im_std
out_image = np.empty(image.shape, dtype='float32')
for src_s, trg_s, mrg_s in get_coord(image.shape, size, margin):
patch = resizer.before(image[src_s], 2 ** (self.net.depth), exclude=None)
input_fn = tf.estimator.inputs.numpy_input_fn(x=patch[None, ..., None], batch_size=1, num_epochs=1, shuffle=False)
patch = list(estimator.predict(input_fn=input_fn, checkpoint_path=checkpoint_path))[0][..., 0]
patch = resizer.after(patch, exclude=None)
out_image[trg_s] = patch[mrg_s]
image = out_image*im_std + im_mean
return image
|