Spaces:
Sleeping
Sleeping
inital agent build
Browse files- .gitignore +1 -0
- app.py +61 -48
- gaia_agent.py +0 -3
- model.py +0 -0
- requirements.txt +5 -1
- src/__pycache__/config.cpython-310.pyc +0 -0
- src/__pycache__/gaia_agent.cpython-310.pyc +0 -0
- src/__pycache__/model.cpython-310.pyc +0 -0
- src/__pycache__/prompts.cpython-310.pyc +0 -0
- src/__pycache__/state.cpython-310.pyc +0 -0
- src/__pycache__/tools.cpython-310.pyc +0 -0
- src/config.py +66 -0
- src/gaia_agent.py +84 -0
- src/model.py +28 -0
- src/prompts.py +7 -0
- src/state.py +60 -0
- src/tools.py +19 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.env
|
app.py
CHANGED
@@ -3,10 +3,16 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
10 |
|
11 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
12 |
"""
|
@@ -29,7 +35,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
29 |
|
30 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
31 |
try:
|
32 |
-
agent =
|
33 |
except Exception as e:
|
34 |
print(f"Error instantiating agent: {e}")
|
35 |
return f"Error initializing agent: {e}", None
|
@@ -69,64 +75,71 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
69 |
print(f"Skipping item with missing task_id or question: {item}")
|
70 |
continue
|
71 |
try:
|
72 |
-
|
|
|
|
|
73 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
74 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
75 |
except Exception as e:
|
76 |
print(f"Error running agent on task {task_id}: {e}")
|
77 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
|
78 |
|
79 |
if not answers_payload:
|
80 |
print("Agent did not produce any answers to submit.")
|
81 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
|
|
|
|
|
|
82 |
|
83 |
# 4. Prepare Submission
|
84 |
-
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
85 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
86 |
-
print(status_update)
|
87 |
-
|
88 |
-
# 5. Submit
|
89 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
90 |
-
try:
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
except requests.exceptions.HTTPError as e:
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
except requests.exceptions.Timeout:
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
except requests.exceptions.RequestException as e:
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
except Exception as e:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
131 |
|
132 |
# --- Build Gradio Interface using Blocks ---
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
from langchain_core.messages import HumanMessage
|
9 |
+
|
10 |
+
from src.gaia_agent import GaiaAgent
|
11 |
|
12 |
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
+
load_dotenv() # Load environment variables from .env file
|
16 |
|
17 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
18 |
"""
|
|
|
35 |
|
36 |
# 1. Instantiate Agent ( modify this part to create your agent)
|
37 |
try:
|
38 |
+
agent = GaiaAgent()
|
39 |
except Exception as e:
|
40 |
print(f"Error instantiating agent: {e}")
|
41 |
return f"Error initializing agent: {e}", None
|
|
|
75 |
print(f"Skipping item with missing task_id or question: {item}")
|
76 |
continue
|
77 |
try:
|
78 |
+
print(f"Running agent on task {task_id}: {question_text}")
|
79 |
+
submitted_answer = agent.graph.invoke({"messages": [HumanMessage(content=question_text)]})
|
80 |
+
print(submitted_answer)
|
81 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
82 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
83 |
except Exception as e:
|
84 |
print(f"Error running agent on task {task_id}: {e}")
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
86 |
+
|
87 |
+
break
|
88 |
|
89 |
if not answers_payload:
|
90 |
print("Agent did not produce any answers to submit.")
|
91 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
92 |
+
|
93 |
+
print(f"Agent finished running on {len(answers_payload)} questions.")
|
94 |
+
print(f"Results log: {results_log}")
|
95 |
|
96 |
# 4. Prepare Submission
|
97 |
+
# submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
98 |
+
# status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
99 |
+
# print(status_update)
|
100 |
+
|
101 |
+
# # 5. Submit
|
102 |
+
# print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
103 |
+
# try:
|
104 |
+
# response = requests.post(submit_url, json=submission_data, timeout=60)
|
105 |
+
# response.raise_for_status()
|
106 |
+
# result_data = response.json()
|
107 |
+
# final_status = (
|
108 |
+
# f"Submission Successful!\n"
|
109 |
+
# f"User: {result_data.get('username')}\n"
|
110 |
+
# f"Overall Score: {result_data.get('score', 'N/A')}% "
|
111 |
+
# f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
112 |
+
# f"Message: {result_data.get('message', 'No message received.')}"
|
113 |
+
# )
|
114 |
+
# print("Submission successful.")
|
115 |
+
# results_df = pd.DataFrame(results_log)
|
116 |
+
# return final_status, results_df
|
117 |
+
# except requests.exceptions.HTTPError as e:
|
118 |
+
# error_detail = f"Server responded with status {e.response.status_code}."
|
119 |
+
# try:
|
120 |
+
# error_json = e.response.json()
|
121 |
+
# error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
122 |
+
# except requests.exceptions.JSONDecodeError:
|
123 |
+
# error_detail += f" Response: {e.response.text[:500]}"
|
124 |
+
# status_message = f"Submission Failed: {error_detail}"
|
125 |
+
# print(status_message)
|
126 |
+
# results_df = pd.DataFrame(results_log)
|
127 |
+
# return status_message, results_df
|
128 |
+
# except requests.exceptions.Timeout:
|
129 |
+
# status_message = "Submission Failed: The request timed out."
|
130 |
+
# print(status_message)
|
131 |
+
# results_df = pd.DataFrame(results_log)
|
132 |
+
# return status_message, results_df
|
133 |
+
# except requests.exceptions.RequestException as e:
|
134 |
+
# status_message = f"Submission Failed: Network error - {e}"
|
135 |
+
# print(status_message)
|
136 |
+
# results_df = pd.DataFrame(results_log)
|
137 |
+
# return status_message, results_df
|
138 |
+
# except Exception as e:
|
139 |
+
# status_message = f"An unexpected error occurred during submission: {e}"
|
140 |
+
# print(status_message)
|
141 |
+
# results_df = pd.DataFrame(results_log)
|
142 |
+
# return status_message, results_df
|
143 |
|
144 |
|
145 |
# --- Build Gradio Interface using Blocks ---
|
gaia_agent.py
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
class GaiaAgent:
|
2 |
-
def __init__(self):
|
3 |
-
pass
|
|
|
|
|
|
|
|
model.py
DELETED
File without changes
|
requirements.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
gradio
|
2 |
requests
|
3 |
-
|
|
|
|
|
|
|
|
|
|
1 |
gradio
|
2 |
requests
|
3 |
+
python-dotenv
|
4 |
+
langchain
|
5 |
+
langchain-google-genai
|
6 |
+
langchain-tavily
|
7 |
+
langgraph
|
src/__pycache__/config.cpython-310.pyc
ADDED
Binary file (2.47 kB). View file
|
|
src/__pycache__/gaia_agent.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
src/__pycache__/model.cpython-310.pyc
ADDED
Binary file (888 Bytes). View file
|
|
src/__pycache__/prompts.cpython-310.pyc
ADDED
Binary file (398 Bytes). View file
|
|
src/__pycache__/state.cpython-310.pyc
ADDED
Binary file (1.48 kB). View file
|
|
src/__pycache__/tools.cpython-310.pyc
ADDED
Binary file (989 Bytes). View file
|
|
src/config.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Define the configurable parameters for the agent."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from dataclasses import dataclass, field, fields
|
6 |
+
from typing import Annotated
|
7 |
+
|
8 |
+
from langchain_core.runnables import ensure_config
|
9 |
+
from langgraph.config import get_config
|
10 |
+
|
11 |
+
from src.prompts import SYSTEM_PROMPT
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass(kw_only=True)
|
15 |
+
class Configuration:
|
16 |
+
"""The configuration for the agent."""
|
17 |
+
|
18 |
+
system_prompt: str = field(
|
19 |
+
default=SYSTEM_PROMPT,
|
20 |
+
metadata={
|
21 |
+
"description": "The system prompt to use for the agent's interactions. "
|
22 |
+
"This prompt sets the context and behavior for the agent."
|
23 |
+
},
|
24 |
+
)
|
25 |
+
|
26 |
+
google_model: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = field(
|
27 |
+
default="gemini-2.0-flash",
|
28 |
+
metadata={
|
29 |
+
"description": "The name of the Google AI language model to use for the agent's main interactions. "
|
30 |
+
"Should be in the form: model-name."
|
31 |
+
},
|
32 |
+
)
|
33 |
+
|
34 |
+
max_iter: int = field(
|
35 |
+
default=5,
|
36 |
+
metadata={
|
37 |
+
"description": "The maximum number of iterations to run."
|
38 |
+
},
|
39 |
+
)
|
40 |
+
|
41 |
+
max_search_results: int = field(
|
42 |
+
default=5,
|
43 |
+
metadata={
|
44 |
+
"description": "The maximum number of search results to return for each search query."
|
45 |
+
},
|
46 |
+
)
|
47 |
+
|
48 |
+
temperature: float = field(
|
49 |
+
default=0.2,
|
50 |
+
metadata={
|
51 |
+
"description": "The temperature to use for the model's responses. "
|
52 |
+
"Higher values result in more random outputs, while lower values make the output more deterministic."
|
53 |
+
},
|
54 |
+
)
|
55 |
+
|
56 |
+
@classmethod
|
57 |
+
def from_context(cls) -> Configuration:
|
58 |
+
"""Create a Configuration instance from a RunnableConfig object."""
|
59 |
+
try:
|
60 |
+
config = get_config()
|
61 |
+
except RuntimeError:
|
62 |
+
config = None
|
63 |
+
config = ensure_config(config)
|
64 |
+
configurable = config.get("configurable") or {}
|
65 |
+
_fields = {f.name for f in fields(cls) if f.init}
|
66 |
+
return cls(**{k: v for k, v in configurable.items() if k in _fields})
|
src/gaia_agent.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, cast
|
2 |
+
|
3 |
+
from langchain_core.messages import AIMessage
|
4 |
+
from langgraph.graph import StateGraph
|
5 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
6 |
+
|
7 |
+
from src.config import Configuration
|
8 |
+
from src.model import GoogleModel
|
9 |
+
from src.state import InputState, State
|
10 |
+
from src.tools import TOOLS
|
11 |
+
|
12 |
+
class GaiaAgent:
|
13 |
+
def __init__(self):
|
14 |
+
self.graph = self._build_graph()
|
15 |
+
|
16 |
+
def _build_graph(self) -> StateGraph:
|
17 |
+
builder = StateGraph(State, input=InputState, config_schema=Configuration)
|
18 |
+
|
19 |
+
# Define the two nodes we will cycle between
|
20 |
+
builder.add_node("call_model", self._call_model)
|
21 |
+
builder.add_node("tools", ToolNode(TOOLS))
|
22 |
+
|
23 |
+
# Set the entrypoint as `call_model`
|
24 |
+
# This means that this node is the first one called
|
25 |
+
builder.add_edge("__start__", "call_model")
|
26 |
+
builder.add_conditional_edges(
|
27 |
+
"call_model",
|
28 |
+
# If the latest message requires a tool, route to tools
|
29 |
+
# Otherwise, provide a direct response
|
30 |
+
tools_condition,
|
31 |
+
)
|
32 |
+
builder.add_edge("tools", "call_model")
|
33 |
+
|
34 |
+
graph = builder.compile(name="GAIA Agent", debug=True)
|
35 |
+
|
36 |
+
return graph
|
37 |
+
|
38 |
+
def _call_model(self, state: State) -> Dict[str, List[AIMessage]]:
|
39 |
+
"""Call the LLM powering our "agent".
|
40 |
+
|
41 |
+
This function prepares the prompt, initializes the model, and processes the response.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
state (State): The current state of the conversation.
|
45 |
+
config (RunnableConfig): Configuration for the model run.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
dict: A dictionary containing the model's response message.
|
49 |
+
"""
|
50 |
+
configuration = Configuration.from_context()
|
51 |
+
|
52 |
+
# Initialize the model with tool binding. Change the model or add more tools here.
|
53 |
+
model = GoogleModel(
|
54 |
+
model=configuration.google_model,
|
55 |
+
temperature=configuration.temperature,
|
56 |
+
tools=TOOLS
|
57 |
+
)
|
58 |
+
|
59 |
+
# Format the system prompt. Customize this to change the agent's behavior.
|
60 |
+
system_message = configuration.system_prompt
|
61 |
+
|
62 |
+
# Get the model's response
|
63 |
+
response = cast(
|
64 |
+
AIMessage,
|
65 |
+
model.llm.invoke(
|
66 |
+
[{"role": "system", "content": system_message}, *state.messages]
|
67 |
+
),
|
68 |
+
)
|
69 |
+
|
70 |
+
print(response.tool_calls)
|
71 |
+
|
72 |
+
# Handle the case when it's the last step and the model still wants to use a tool
|
73 |
+
if state.is_last_step and response.tool_calls:
|
74 |
+
return {
|
75 |
+
"messages": [
|
76 |
+
AIMessage(
|
77 |
+
id=response.id,
|
78 |
+
content="Sorry, I could not find an answer to your question in the specified number of steps.",
|
79 |
+
)
|
80 |
+
]
|
81 |
+
}
|
82 |
+
|
83 |
+
# Return the model's response as a list to be added to existing messages
|
84 |
+
return {"messages": [response]}
|
src/model.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
2 |
+
|
3 |
+
class GoogleModel:
|
4 |
+
def __init__(
|
5 |
+
self,
|
6 |
+
model: str = "gemini-2.0-flash",
|
7 |
+
temperature: int = 0.2,
|
8 |
+
tools: list = None,
|
9 |
+
):
|
10 |
+
"""Initialize the GoogleModel with the specified model name and temperature.
|
11 |
+
"""
|
12 |
+
|
13 |
+
if tools:
|
14 |
+
self.llm = ChatGoogleGenerativeAI(
|
15 |
+
model=model,
|
16 |
+
temperature=temperature,
|
17 |
+
max_tokens=None,
|
18 |
+
timeout=None,
|
19 |
+
max_retries=1,
|
20 |
+
).bind_tools(tools=tools)
|
21 |
+
else:
|
22 |
+
self.llm = ChatGoogleGenerativeAI(
|
23 |
+
model=model,
|
24 |
+
temperature=temperature,
|
25 |
+
max_tokens=None,
|
26 |
+
timeout=None,
|
27 |
+
max_retries=1,
|
28 |
+
)
|
src/prompts.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SYSTEM_PROMPT = (
|
2 |
+
"You are a helpful AI assistant.\n"
|
3 |
+
"Please answer the question to the best of your ability.\n"
|
4 |
+
"Use the tools provided to you to find the answer.\n"
|
5 |
+
"Do not ask for permission to use the tools.\n"
|
6 |
+
"If you think you should use a tool, do so.\n"
|
7 |
+
)
|
src/state.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Define the state structures for the agent."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from dataclasses import dataclass, field
|
6 |
+
from typing import Sequence
|
7 |
+
|
8 |
+
from langchain_core.messages import AnyMessage
|
9 |
+
from langgraph.graph import add_messages
|
10 |
+
from langgraph.managed import IsLastStep
|
11 |
+
from typing_extensions import Annotated
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class InputState:
|
16 |
+
"""Defines the input state for the agent, representing a narrower interface to the outside world.
|
17 |
+
|
18 |
+
This class is used to define the initial state and structure of incoming data.
|
19 |
+
"""
|
20 |
+
|
21 |
+
messages: Annotated[Sequence[AnyMessage], add_messages] = field(
|
22 |
+
default_factory=list
|
23 |
+
)
|
24 |
+
"""
|
25 |
+
Messages tracking the primary execution state of the agent.
|
26 |
+
|
27 |
+
Typically accumulates a pattern of:
|
28 |
+
1. HumanMessage - user input
|
29 |
+
2. AIMessage with .tool_calls - agent picking tool(s) to use to collect information
|
30 |
+
3. ToolMessage(s) - the responses (or errors) from the executed tools
|
31 |
+
4. AIMessage without .tool_calls - agent responding in unstructured format to the user
|
32 |
+
5. HumanMessage - user responds with the next conversational turn
|
33 |
+
|
34 |
+
Steps 2-5 may repeat as needed.
|
35 |
+
|
36 |
+
The `add_messages` annotation ensures that new messages are merged with existing ones,
|
37 |
+
updating by ID to maintain an "append-only" state unless a message with the same ID is provided.
|
38 |
+
"""
|
39 |
+
|
40 |
+
|
41 |
+
@dataclass
|
42 |
+
class State(InputState):
|
43 |
+
"""Represents the complete state of the agent, extending InputState with additional attributes.
|
44 |
+
|
45 |
+
This class can be used to store any information needed throughout the agent's lifecycle.
|
46 |
+
"""
|
47 |
+
|
48 |
+
is_last_step: IsLastStep = field(default=False)
|
49 |
+
"""
|
50 |
+
Indicates whether the current step is the last one before the graph raises an error.
|
51 |
+
|
52 |
+
This is a 'managed' variable, controlled by the state machine rather than user code.
|
53 |
+
It is set to 'True' when the step count reaches recursion_limit - 1.
|
54 |
+
"""
|
55 |
+
|
56 |
+
# Additional attributes can be added here as needed.
|
57 |
+
# Common examples include:
|
58 |
+
# retrieved_documents: List[Document] = field(default_factory=list)
|
59 |
+
# extracted_entities: Dict[str, Any] = field(default_factory=dict)
|
60 |
+
# api_connections: Dict[str, Any] = field(default_factory=dict)
|
src/tools.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, List, Optional, cast
|
2 |
+
|
3 |
+
from langchain_tavily import TavilySearch # type: ignore[import-not-found]
|
4 |
+
|
5 |
+
from src.config import Configuration
|
6 |
+
|
7 |
+
def search(query: str) -> Optional[dict[str, Any]]:
|
8 |
+
"""Search for general web results.
|
9 |
+
|
10 |
+
This function performs a search using the Tavily search engine, which is designed
|
11 |
+
to provide comprehensive, accurate, and trusted results. It's particularly useful
|
12 |
+
for answering questions about current events.
|
13 |
+
"""
|
14 |
+
configuration = Configuration.from_context()
|
15 |
+
wrapped = TavilySearch(max_results=configuration.max_search_results)
|
16 |
+
return cast(dict[str, Any], wrapped.invoke({"query": query}))
|
17 |
+
|
18 |
+
|
19 |
+
TOOLS: List[Callable[..., Any]] = [search]
|