Spaces:
Paused
Paused
File size: 9,084 Bytes
c6f92cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# Part of the code is from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py
# Modified by Yue Zhao
# The original code is under MIT License
import gzip
import html
import os
from functools import lru_cache
import ftfy
import regex as re
import torch
from transformers import (BertTokenizer, DistilBertTokenizer, GPT2Tokenizer)
@lru_cache()
def default_bpe():
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
@lru_cache()
def bytes_to_unicode():
"""
Returns list of utf-8 byte and a corresponding list of unicode strings.
The reversible bpe codes work on unicode strings.
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
This is a signficant percentage of your normal, say, 32K bpe vocab.
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
And avoids mapping to whitespace/control characters the bpe code barfs on.
"""
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
cs = bs[:]
n = 0
for b in range(2**8):
if b not in bs:
bs.append(b)
cs.append(2**8+n)
n += 1
cs = [chr(n) for n in cs]
return dict(zip(bs, cs))
def get_pairs(word):
"""Return set of symbol pairs in a word.
Word is represented as tuple of symbols (symbols being variable-length strings).
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r'\s+', ' ', text)
text = text.strip()
return text
class SimpleTokenizer(object):
def __init__(self, bpe_path: str = default_bpe()):
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
merges = merges[1:49152-256-2+1]
merges = [tuple(merge.split()) for merge in merges]
vocab = list(bytes_to_unicode().values())
vocab = vocab + [v+'</w>' for v in vocab]
for merge in merges:
vocab.append(''.join(merge))
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
self.encoder = dict(zip(vocab, range(len(vocab))))
self.decoder = {v: k for k, v in self.encoder.items()}
self.bpe_ranks = dict(zip(merges, range(len(merges))))
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
pairs = get_pairs(word)
if not pairs:
return token+'</w>'
while True:
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = ' '.join(word)
self.cache[token] = word
return word
def encode(self, text):
bpe_tokens = []
text = whitespace_clean(basic_clean(text)).lower()
for token in re.findall(self.pat, text):
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
return bpe_tokens
def decode(self, tokens):
text = ''.join([self.decoder[token] for token in tokens])
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
return text
def __call__(self, texts, context_length=77):
if isinstance(texts, str):
texts = [texts]
sot_token = self.encoder["<|startoftext|>"]
eot_token = self.encoder["<|endoftext|>"]
all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts]
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
for i, tokens in enumerate(all_tokens):
tokens = tokens[:context_length]
result[i, :len(tokens)] = torch.tensor(tokens)
if len(result) == 1:
return result[0]
return result
class MyBertTokenizer(object):
def __init__(self, name=''):
print('=> Initialize MyBertTokenizer ({})'.format(name))
self.tokenizer = BertTokenizer.from_pretrained(name)
self.bos_token_id, self.eos_token_id = self.tokenizer('').input_ids
self.pad_token_id = 0
def __call__(self, texts, context_length=77):
if isinstance(texts, str):
texts = [texts]
result = torch.zeros(len(texts), context_length, dtype=torch.long)
mask = torch.zeros(len(texts), context_length, dtype=torch.float32)
for i, text in enumerate(texts):
tokens = self.tokenizer(text)
input_ids = tokens.input_ids[:context_length]
attention_mask = tokens.attention_mask[:context_length]
result[i, :len(input_ids)] = torch.tensor(input_ids)
mask[i, :len(attention_mask)] = torch.tensor(attention_mask)
if len(result) == 1:
return result[0], mask[0]
return result, mask
class MyDistilBertTokenizer(object):
def __init__(self, name=''):
print('=> Initialize MyDistilBertTokenizer ({})'.format(name))
self.tokenizer = DistilBertTokenizer.from_pretrained(name)
def __call__(self, texts, context_length=77):
if isinstance(texts, str):
texts = [texts]
result = torch.zeros(len(texts), context_length, dtype=torch.long)
mask = torch.zeros(len(texts), context_length, dtype=torch.float32)
for i, text in enumerate(texts):
tokens = self.tokenizer(text)
input_ids = tokens.input_ids[:context_length]
attention_mask = tokens.attention_mask[:context_length]
result[i, :len(input_ids)] = torch.tensor(input_ids)
mask[i, :len(attention_mask)] = torch.tensor(attention_mask)
if len(result) == 1:
return result[0], mask[0]
return result, mask
class MyGPT2Tokenizer(object):
def __init__(self, name='', add_bos=False):
print('=> Initialize MyGPT2Tokenizer ({})'.format(name))
self.tokenizer = GPT2Tokenizer.from_pretrained(name)
self.bos_token_id, self.eos_token_id = self.tokenizer.bos_token_id, self.tokenizer.eos_token_id
self.pad_token_id = 0
self.add_bos = add_bos
# num_added_tokens = self.tokenizer.add_special_tokens({'pad_token': "[PAD]"})
# print('num_added_tokens={}'.format(len(num_added_tokens)))
def __call__(self, texts, context_length=77):
if isinstance(texts, str):
texts = [texts]
result = torch.zeros(len(texts), context_length, dtype=torch.long)
for i, text in enumerate(texts):
tokens = self.tokenizer(text)
if not self.add_bos:
input_ids = tokens.input_ids[:context_length - 1]
input_ids = input_ids + [self.tokenizer.eos_token_id] # add [EOS]
else:
input_ids = tokens.input_ids[:context_length - 2]
input_ids = [self.tokenizer.bos_token_id] + input_ids + [self.tokenizer.eos_token_id] # add [EOS]
# attention_mask = tokens.attention_mask[:context_length]
# attention_mask = attention_mask + [0.] * pad_length
result[i, :len(input_ids)] = torch.tensor(input_ids)
if len(result) == 1:
return result[0]
return result
|