File size: 9,084 Bytes
c6f92cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

# Part of the code is from https://github.com/openai/CLIP/blob/main/clip/simple_tokenizer.py
# Modified by Yue Zhao
# The original code is under MIT License

import gzip
import html
import os
from functools import lru_cache

import ftfy
import regex as re
import torch

from transformers import (BertTokenizer, DistilBertTokenizer, GPT2Tokenizer)


@lru_cache()
def default_bpe():
    return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")


@lru_cache()
def bytes_to_unicode():
    """
    Returns list of utf-8 byte and a corresponding list of unicode strings.
    The reversible bpe codes work on unicode strings.
    This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
    When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
    This is a signficant percentage of your normal, say, 32K bpe vocab.
    To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
    And avoids mapping to whitespace/control characters the bpe code barfs on.
    """
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n += 1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))


def get_pairs(word):
    """Return set of symbol pairs in a word.
    Word is represented as tuple of symbols (symbols being variable-length strings).
    """
    pairs = set()
    prev_char = word[0]
    for char in word[1:]:
        pairs.add((prev_char, char))
        prev_char = char
    return pairs


def basic_clean(text):
    text = ftfy.fix_text(text)
    text = html.unescape(html.unescape(text))
    return text.strip()


def whitespace_clean(text):
    text = re.sub(r'\s+', ' ', text)
    text = text.strip()
    return text


class SimpleTokenizer(object):
    def __init__(self, bpe_path: str = default_bpe()):
        self.byte_encoder = bytes_to_unicode()
        self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
        merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
        merges = merges[1:49152-256-2+1]
        merges = [tuple(merge.split()) for merge in merges]
        vocab = list(bytes_to_unicode().values())
        vocab = vocab + [v+'</w>' for v in vocab]
        for merge in merges:
            vocab.append(''.join(merge))
        vocab.extend(['<|startoftext|>', '<|endoftext|>'])
        self.encoder = dict(zip(vocab, range(len(vocab))))
        self.decoder = {v: k for k, v in self.encoder.items()}
        self.bpe_ranks = dict(zip(merges, range(len(merges))))
        self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
        self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)

    def bpe(self, token):
        if token in self.cache:
            return self.cache[token]
        word = tuple(token[:-1]) + ( token[-1] + '</w>',)
        pairs = get_pairs(word)

        if not pairs:
            return token+'</w>'

        while True:
            bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
            if bigram not in self.bpe_ranks:
                break
            first, second = bigram
            new_word = []
            i = 0
            while i < len(word):
                try:
                    j = word.index(first, i)
                    new_word.extend(word[i:j])
                    i = j
                except:
                    new_word.extend(word[i:])
                    break

                if word[i] == first and i < len(word)-1 and word[i+1] == second:
                    new_word.append(first+second)
                    i += 2
                else:
                    new_word.append(word[i])
                    i += 1
            new_word = tuple(new_word)
            word = new_word
            if len(word) == 1:
                break
            else:
                pairs = get_pairs(word)
        word = ' '.join(word)
        self.cache[token] = word
        return word

    def encode(self, text):
        bpe_tokens = []
        text = whitespace_clean(basic_clean(text)).lower()
        for token in re.findall(self.pat, text):
            token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
            bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
        return bpe_tokens

    def decode(self, tokens):
        text = ''.join([self.decoder[token] for token in tokens])
        text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
        return text

    def __call__(self, texts, context_length=77):
        if isinstance(texts, str):
            texts = [texts]

        sot_token = self.encoder["<|startoftext|>"]
        eot_token = self.encoder["<|endoftext|>"]
        all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts]
        result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)

        for i, tokens in enumerate(all_tokens):
            tokens = tokens[:context_length]
            result[i, :len(tokens)] = torch.tensor(tokens)

        if len(result) == 1:
            return result[0]
        return result


class MyBertTokenizer(object):
    def __init__(self, name=''):
        print('=> Initialize MyBertTokenizer ({})'.format(name))
        self.tokenizer = BertTokenizer.from_pretrained(name)
        self.bos_token_id, self.eos_token_id = self.tokenizer('').input_ids
        self.pad_token_id = 0

    def __call__(self, texts, context_length=77):
        if isinstance(texts, str):
            texts = [texts]
        result = torch.zeros(len(texts), context_length, dtype=torch.long)
        mask = torch.zeros(len(texts), context_length, dtype=torch.float32)
        for i, text in enumerate(texts):
            tokens = self.tokenizer(text)
            input_ids = tokens.input_ids[:context_length]
            attention_mask = tokens.attention_mask[:context_length]
            result[i, :len(input_ids)] = torch.tensor(input_ids)
            mask[i, :len(attention_mask)] = torch.tensor(attention_mask)

        if len(result) == 1:
            return result[0], mask[0]
        return result, mask


class MyDistilBertTokenizer(object):
    def __init__(self, name=''):
        print('=> Initialize MyDistilBertTokenizer ({})'.format(name))
        self.tokenizer = DistilBertTokenizer.from_pretrained(name)

    def __call__(self, texts, context_length=77):
        if isinstance(texts, str):
            texts = [texts]
        result = torch.zeros(len(texts), context_length, dtype=torch.long)
        mask = torch.zeros(len(texts), context_length, dtype=torch.float32)
        for i, text in enumerate(texts):
            tokens = self.tokenizer(text)
            input_ids = tokens.input_ids[:context_length]
            attention_mask = tokens.attention_mask[:context_length]
            result[i, :len(input_ids)] = torch.tensor(input_ids)
            mask[i, :len(attention_mask)] = torch.tensor(attention_mask)

        if len(result) == 1:
            return result[0], mask[0]
        return result, mask


class MyGPT2Tokenizer(object):
    def __init__(self, name='', add_bos=False):
        print('=> Initialize MyGPT2Tokenizer ({})'.format(name))
        self.tokenizer = GPT2Tokenizer.from_pretrained(name)
        self.bos_token_id, self.eos_token_id = self.tokenizer.bos_token_id, self.tokenizer.eos_token_id
        self.pad_token_id = 0
        self.add_bos = add_bos
        # num_added_tokens = self.tokenizer.add_special_tokens({'pad_token': "[PAD]"})
        # print('num_added_tokens={}'.format(len(num_added_tokens)))

    def __call__(self, texts, context_length=77):
        if isinstance(texts, str):
            texts = [texts]
        result = torch.zeros(len(texts), context_length, dtype=torch.long)
        for i, text in enumerate(texts):
            tokens = self.tokenizer(text)
            if not self.add_bos:
                input_ids = tokens.input_ids[:context_length - 1]
                input_ids = input_ids + [self.tokenizer.eos_token_id]  # add [EOS]
            else:
                input_ids = tokens.input_ids[:context_length - 2]
                input_ids = [self.tokenizer.bos_token_id] + input_ids + [self.tokenizer.eos_token_id]  # add [EOS]
            # attention_mask = tokens.attention_mask[:context_length]
            # attention_mask = attention_mask + [0.] * pad_length
            result[i, :len(input_ids)] = torch.tensor(input_ids)

        if len(result) == 1:
            return result[0]
        return result