Spaces:
Configuration error
Configuration error
import argparse | |
import os | |
import random | |
from urllib import request | |
import torch | |
import torch.nn.functional as F | |
import progressbar | |
import torchaudio | |
from models.classifier import AudioMiniEncoderWithClassifierHead | |
from models.cvvp import CVVP | |
from models.diffusion_decoder import DiffusionTts | |
from models.autoregressive import UnifiedVoice | |
from tqdm import tqdm | |
from models.arch_util import TorchMelSpectrogram | |
from models.clvp import CLVP | |
from models.vocoder import UnivNetGenerator | |
from utils.audio import load_audio, wav_to_univnet_mel, denormalize_tacotron_mel | |
from utils.diffusion import SpacedDiffusion, space_timesteps, get_named_beta_schedule | |
from utils.tokenizer import VoiceBpeTokenizer, lev_distance | |
pbar = None | |
def download_models(specific_models=None): | |
""" | |
Call to download all the models that Tortoise uses. | |
""" | |
MODELS = { | |
'autoregressive.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/autoregressive.pth', | |
'classifier.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/classifier.pth', | |
'clvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/clvp.pth', | |
'cvvp.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/cvvp.pth', | |
'diffusion_decoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/diffusion_decoder.pth', | |
'vocoder.pth': 'https://huggingface.co/jbetker/tortoise-tts-v2/resolve/hf/.models/vocoder.pth', | |
} | |
os.makedirs('.models', exist_ok=True) | |
def show_progress(block_num, block_size, total_size): | |
global pbar | |
if pbar is None: | |
pbar = progressbar.ProgressBar(maxval=total_size) | |
pbar.start() | |
downloaded = block_num * block_size | |
if downloaded < total_size: | |
pbar.update(downloaded) | |
else: | |
pbar.finish() | |
pbar = None | |
for model_name, url in MODELS.items(): | |
if specific_models is not None and model_name not in specific_models: | |
continue | |
if os.path.exists(f'.models/{model_name}'): | |
continue | |
print(f'Downloading {model_name} from {url}...') | |
request.urlretrieve(url, f'.models/{model_name}', show_progress) | |
print('Done.') | |
def pad_or_truncate(t, length): | |
""" | |
Utility function for forcing <t> to have the specified sequence length, whether by clipping it or padding it with 0s. | |
""" | |
if t.shape[-1] == length: | |
return t | |
elif t.shape[-1] < length: | |
return F.pad(t, (0, length-t.shape[-1])) | |
else: | |
return t[..., :length] | |
def load_discrete_vocoder_diffuser(trained_diffusion_steps=4000, desired_diffusion_steps=200, cond_free=True, cond_free_k=1): | |
""" | |
Helper function to load a GaussianDiffusion instance configured for use as a vocoder. | |
""" | |
return SpacedDiffusion(use_timesteps=space_timesteps(trained_diffusion_steps, [desired_diffusion_steps]), model_mean_type='epsilon', | |
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', trained_diffusion_steps), | |
conditioning_free=cond_free, conditioning_free_k=cond_free_k) | |
def format_conditioning(clip, cond_length=132300): | |
""" | |
Converts the given conditioning signal to a MEL spectrogram and clips it as expected by the models. | |
""" | |
gap = clip.shape[-1] - cond_length | |
if gap < 0: | |
clip = F.pad(clip, pad=(0, abs(gap))) | |
elif gap > 0: | |
rand_start = random.randint(0, gap) | |
clip = clip[:, rand_start:rand_start + cond_length] | |
mel_clip = TorchMelSpectrogram()(clip.unsqueeze(0)).squeeze(0) | |
return mel_clip.unsqueeze(0).cuda() | |
def fix_autoregressive_output(codes, stop_token, complain=True): | |
""" | |
This function performs some padding on coded audio that fixes a mismatch issue between what the diffusion model was | |
trained on and what the autoregressive code generator creates (which has no padding or end). | |
This is highly specific to the DVAE being used, so this particular coding will not necessarily work if used with | |
a different DVAE. This can be inferred by feeding a audio clip padded with lots of zeros on the end through the DVAE | |
and copying out the last few codes. | |
Failing to do this padding will produce speech with a harsh end that sounds like "BLAH" or similar. | |
""" | |
# Strip off the autoregressive stop token and add padding. | |
stop_token_indices = (codes == stop_token).nonzero() | |
if len(stop_token_indices) == 0: | |
if complain: | |
print("No stop tokens found, enjoy that output of yours!") | |
return codes | |
else: | |
codes[stop_token_indices] = 83 | |
stm = stop_token_indices.min().item() | |
codes[stm:] = 83 | |
if stm - 3 < codes.shape[0]: | |
codes[-3] = 45 | |
codes[-2] = 45 | |
codes[-1] = 248 | |
return codes | |
def do_spectrogram_diffusion(diffusion_model, diffuser, latents, conditioning_samples, temperature=1, verbose=True): | |
""" | |
Uses the specified diffusion model to convert discrete codes into a spectrogram. | |
""" | |
with torch.no_grad(): | |
cond_mels = [] | |
for sample in conditioning_samples: | |
# The diffuser operates at a sample rate of 24000 (except for the latent inputs) | |
sample = torchaudio.functional.resample(sample, 22050, 24000) | |
sample = pad_or_truncate(sample, 102400) | |
cond_mel = wav_to_univnet_mel(sample.to(latents.device), do_normalization=False) | |
cond_mels.append(cond_mel) | |
cond_mels = torch.stack(cond_mels, dim=1) | |
output_seq_len = latents.shape[1] * 4 * 24000 // 22050 # This diffusion model converts from 22kHz spectrogram codes to a 24kHz spectrogram signal. | |
output_shape = (latents.shape[0], 100, output_seq_len) | |
precomputed_embeddings = diffusion_model.timestep_independent(latents, cond_mels, output_seq_len, False) | |
noise = torch.randn(output_shape, device=latents.device) * temperature | |
mel = diffuser.p_sample_loop(diffusion_model, output_shape, noise=noise, | |
model_kwargs={'precomputed_aligned_embeddings': precomputed_embeddings}, | |
progress=verbose) | |
return denormalize_tacotron_mel(mel)[:,:,:output_seq_len] | |
def classify_audio_clip(clip): | |
""" | |
Returns whether or not Tortoises' classifier thinks the given clip came from Tortoise. | |
:param clip: torch tensor containing audio waveform data (get it from load_audio) | |
:return: True if the clip was classified as coming from Tortoise and false if it was classified as real. | |
""" | |
download_models(['classifier.pth']) | |
classifier = AudioMiniEncoderWithClassifierHead(2, spec_dim=1, embedding_dim=512, depth=5, downsample_factor=4, | |
resnet_blocks=2, attn_blocks=4, num_attn_heads=4, base_channels=32, | |
dropout=0, kernel_size=5, distribute_zero_label=False) | |
classifier.load_state_dict(torch.load('.models/classifier.pth', map_location=torch.device('cpu'))) | |
clip = clip.cpu().unsqueeze(0) | |
results = F.softmax(classifier(clip), dim=-1) | |
return results[0][0] | |
class TextToSpeech: | |
""" | |
Main entry point into Tortoise. | |
:param autoregressive_batch_size: Specifies how many samples to generate per batch. Lower this if you are seeing | |
GPU OOM errors. Larger numbers generates slightly faster. | |
""" | |
def __init__(self, autoregressive_batch_size=16): | |
self.autoregressive_batch_size = autoregressive_batch_size | |
self.tokenizer = VoiceBpeTokenizer() | |
download_models() | |
self.autoregressive = UnifiedVoice(max_mel_tokens=604, max_text_tokens=402, max_conditioning_inputs=2, layers=30, | |
model_dim=1024, | |
heads=16, number_text_tokens=255, start_text_token=255, checkpointing=False, | |
train_solo_embeddings=False, | |
average_conditioning_embeddings=True).cpu().eval() | |
self.autoregressive.load_state_dict(torch.load('.models/autoregressive.pth')) | |
self.clvp = CLVP(dim_text=512, dim_speech=512, dim_latent=512, num_text_tokens=256, text_enc_depth=12, | |
text_seq_len=350, text_heads=8, | |
num_speech_tokens=8192, speech_enc_depth=12, speech_heads=8, speech_seq_len=430, | |
use_xformers=True).cpu().eval() | |
self.clvp.load_state_dict(torch.load('.models/clvp.pth')) | |
self.cvvp = CVVP(model_dim=512, transformer_heads=8, dropout=0, mel_codes=8192, conditioning_enc_depth=8, cond_mask_percentage=0, | |
speech_enc_depth=8, speech_mask_percentage=0, latent_multiplier=1).cpu().eval() | |
self.cvvp.load_state_dict(torch.load('.models/cvvp.pth')) | |
self.diffusion = DiffusionTts(model_channels=1024, num_layers=10, in_channels=100, out_channels=200, | |
in_latent_channels=1024, in_tokens=8193, dropout=0, use_fp16=False, num_heads=16, | |
layer_drop=0, unconditioned_percentage=0).cpu().eval() | |
self.diffusion.load_state_dict(torch.load('.models/diffusion_decoder.pth')) | |
self.vocoder = UnivNetGenerator().cpu() | |
self.vocoder.load_state_dict(torch.load('.models/vocoder.pth')['model_g']) | |
self.vocoder.eval(inference=True) | |
def tts_with_preset(self, text, voice_samples, preset='fast', **kwargs): | |
""" | |
Calls TTS with one of a set of preset generation parameters. Options: | |
'ultra_fast': Produces speech at a speed which belies the name of this repo. (Not really, but it's definitely fastest). | |
'fast': Decent quality speech at a decent inference rate. A good choice for mass inference. | |
'standard': Very good quality. This is generally about as good as you are going to get. | |
'high_quality': Use if you want the absolute best. This is not really worth the compute, though. | |
""" | |
# Use generally found best tuning knobs for generation. | |
kwargs.update({'temperature': .8, 'length_penalty': 1.0, 'repetition_penalty': 2.0, | |
#'typical_sampling': True, | |
'top_p': .8, | |
'cond_free_k': 2.0, 'diffusion_temperature': 1.0}) | |
# Presets are defined here. | |
presets = { | |
'ultra_fast': {'num_autoregressive_samples': 32, 'diffusion_iterations': 16, 'cond_free': False}, | |
'fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 32}, | |
'standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 128}, | |
'high_quality': {'num_autoregressive_samples': 512, 'diffusion_iterations': 1024}, | |
} | |
kwargs.update(presets[preset]) | |
return self.tts(text, voice_samples, **kwargs) | |
def tts(self, text, voice_samples, k=1, verbose=True, | |
# autoregressive generation parameters follow | |
num_autoregressive_samples=512, temperature=.8, length_penalty=1, repetition_penalty=2.0, top_p=.8, max_mel_tokens=500, | |
typical_sampling=False, typical_mass=.9, | |
# CLVP & CVVP parameters | |
clvp_cvvp_slider=.5, | |
# diffusion generation parameters follow | |
diffusion_iterations=100, cond_free=True, cond_free_k=2, diffusion_temperature=1.0, | |
**hf_generate_kwargs): | |
""" | |
Produces an audio clip of the given text being spoken with the given reference voice. | |
:param text: Text to be spoken. | |
:param voice_samples: List of 2 or more ~10 second reference clips which should be torch tensors containing 22.05kHz waveform data. | |
:param k: The number of returned clips. The most likely (as determined by Tortoises' CLVP and CVVP models) clips are returned. | |
:param verbose: Whether or not to print log messages indicating the progress of creating a clip. Default=true. | |
~~AUTOREGRESSIVE KNOBS~~ | |
:param num_autoregressive_samples: Number of samples taken from the autoregressive model, all of which are filtered using CLVP+CVVP. | |
As Tortoise is a probabilistic model, more samples means a higher probability of creating something "great". | |
:param temperature: The softmax temperature of the autoregressive model. | |
:param length_penalty: A length penalty applied to the autoregressive decoder. Higher settings causes the model to produce more terse outputs. | |
:param repetition_penalty: A penalty that prevents the autoregressive decoder from repeating itself during decoding. Can be used to reduce the incidence | |
of long silences or "uhhhhhhs", etc. | |
:param top_p: P value used in nucleus sampling. (0,1]. Lower values mean the decoder produces more "likely" (aka boring) outputs. | |
:param max_mel_tokens: Restricts the output length. (0,600] integer. Each unit is 1/20 of a second. | |
:param typical_sampling: Turns typical sampling on or off. This sampling mode is discussed in this paper: https://arxiv.org/abs/2202.00666 | |
I was interested in the premise, but the results were not as good as I was hoping. This is off by default, but | |
could use some tuning. | |
:param typical_mass: The typical_mass parameter from the typical_sampling algorithm. | |
~~CLVP-CVVP KNOBS~~ | |
:param clvp_cvvp_slider: Controls the influence of the CLVP and CVVP models in selecting the best output from the autoregressive model. | |
[0,1]. Values closer to 1 will cause Tortoise to emit clips that follow the text more. Values closer to | |
0 will cause Tortoise to emit clips that more closely follow the reference clip (e.g. the voice sounds more | |
similar). | |
~~DIFFUSION KNOBS~~ | |
:param diffusion_iterations: Number of diffusion steps to perform. [0,4000]. More steps means the network has more chances to iteratively refine | |
the output, which should theoretically mean a higher quality output. Generally a value above 250 is not noticeably better, | |
however. | |
:param cond_free: Whether or not to perform conditioning-free diffusion. Conditioning-free diffusion performs two forward passes for | |
each diffusion step: one with the outputs of the autoregressive model and one with no conditioning priors. The output | |
of the two is blended according to the cond_free_k value below. Conditioning-free diffusion is the real deal, and | |
dramatically improves realism. | |
:param cond_free_k: Knob that determines how to balance the conditioning free signal with the conditioning-present signal. [0,inf]. | |
As cond_free_k increases, the output becomes dominated by the conditioning-free signal. | |
Formula is: output=cond_present_output*(cond_free_k+1)-cond_absenct_output*cond_free_k | |
:param diffusion_temperature: Controls the variance of the noise fed into the diffusion model. [0,1]. Values at 0 | |
are the "mean" prediction of the diffusion network and will sound bland and smeared. | |
~~OTHER STUFF~~ | |
:param hf_generate_kwargs: The huggingface Transformers generate API is used for the autoregressive transformer. | |
Extra keyword args fed to this function get forwarded directly to that API. Documentation | |
here: https://huggingface.co/docs/transformers/internal/generation_utils | |
:return: Generated audio clip(s) as a torch tensor. Shape 1,S if k=1 else, (k,1,S) where S is the sample length. | |
Sample rate is 24kHz. | |
""" | |
text = torch.IntTensor(self.tokenizer.encode(text)).unsqueeze(0).cuda() | |
text = F.pad(text, (0, 1)) # This may not be necessary. | |
conds = [] | |
if not isinstance(voice_samples, list): | |
voice_samples = [voice_samples] | |
for vs in voice_samples: | |
conds.append(format_conditioning(vs)) | |
conds = torch.stack(conds, dim=1) | |
diffuser = load_discrete_vocoder_diffuser(desired_diffusion_steps=diffusion_iterations, cond_free=cond_free, cond_free_k=cond_free_k) | |
with torch.no_grad(): | |
samples = [] | |
num_batches = num_autoregressive_samples // self.autoregressive_batch_size | |
stop_mel_token = self.autoregressive.stop_mel_token | |
calm_token = 83 # This is the token for coding silence, which is fixed in place with "fix_autoregressive_output" | |
self.autoregressive = self.autoregressive.cuda() | |
if verbose: | |
print("Generating autoregressive samples..") | |
for b in tqdm(range(num_batches), disable=not verbose): | |
codes = self.autoregressive.inference_speech(conds, text, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
num_return_sequences=self.autoregressive_batch_size, | |
length_penalty=length_penalty, | |
repetition_penalty=repetition_penalty, | |
max_generate_length=max_mel_tokens, | |
**hf_generate_kwargs) | |
padding_needed = max_mel_tokens - codes.shape[1] | |
codes = F.pad(codes, (0, padding_needed), value=stop_mel_token) | |
samples.append(codes) | |
self.autoregressive = self.autoregressive.cpu() | |
clip_results = [] | |
self.clvp = self.clvp.cuda() | |
self.cvvp = self.cvvp.cuda() | |
if verbose: | |
print("Computing best candidates using CLVP and CVVP") | |
for batch in tqdm(samples, disable=not verbose): | |
for i in range(batch.shape[0]): | |
batch[i] = fix_autoregressive_output(batch[i], stop_mel_token) | |
clvp = self.clvp(text.repeat(batch.shape[0], 1), batch, return_loss=False) | |
cvvp_accumulator = 0 | |
for cl in range(conds.shape[1]): | |
cvvp_accumulator = cvvp_accumulator + self.cvvp(conds[:, cl].repeat(batch.shape[0], 1, 1), batch, return_loss=False ) | |
cvvp = cvvp_accumulator / conds.shape[1] | |
clip_results.append(clvp * clvp_cvvp_slider + cvvp * (1-clvp_cvvp_slider)) | |
clip_results = torch.cat(clip_results, dim=0) | |
samples = torch.cat(samples, dim=0) | |
best_results = samples[torch.topk(clip_results, k=k).indices] | |
self.clvp = self.clvp.cpu() | |
self.cvvp = self.cvvp.cpu() | |
del samples | |
# The diffusion model actually wants the last hidden layer from the autoregressive model as conditioning | |
# inputs. Re-produce those for the top results. This could be made more efficient by storing all of these | |
# results, but will increase memory usage. | |
self.autoregressive = self.autoregressive.cuda() | |
best_latents = self.autoregressive(conds, text, torch.tensor([text.shape[-1]], device=conds.device), best_results, | |
torch.tensor([best_results.shape[-1]*self.autoregressive.mel_length_compression], device=conds.device), | |
return_latent=True, clip_inputs=False) | |
self.autoregressive = self.autoregressive.cpu() | |
if verbose: | |
print("Transforming autoregressive outputs into audio..") | |
wav_candidates = [] | |
self.diffusion = self.diffusion.cuda() | |
self.vocoder = self.vocoder.cuda() | |
for b in range(best_results.shape[0]): | |
codes = best_results[b].unsqueeze(0) | |
latents = best_latents[b].unsqueeze(0) | |
# Find the first occurrence of the "calm" token and trim the codes to that. | |
ctokens = 0 | |
for k in range(codes.shape[-1]): | |
if codes[0, k] == calm_token: | |
ctokens += 1 | |
else: | |
ctokens = 0 | |
if ctokens > 8: # 8 tokens gives the diffusion model some "breathing room" to terminate speech. | |
latents = latents[:, :k] | |
break | |
mel = do_spectrogram_diffusion(self.diffusion, diffuser, latents, voice_samples, temperature=diffusion_temperature, verbose=verbose) | |
wav = self.vocoder.inference(mel) | |
wav_candidates.append(wav.cpu()) | |
self.diffusion = self.diffusion.cpu() | |
self.vocoder = self.vocoder.cpu() | |
if len(wav_candidates) > 1: | |
return wav_candidates | |
return wav_candidates[0] | |