apsys commited on
Commit
4dd39c5
·
1 Parent(s): 43cabd8

types fix + mmluproru

Browse files
app.py CHANGED
@@ -185,7 +185,7 @@ def update_board():
185
  # shutil.rmtree("./data")
186
  download_dataset("Vikhrmodels/s-openbench-eval", "m_data")
187
  import glob
188
- data_list = [{"musicmc": 0.3021276595744681, "lawmc": 0.2800829875518672, "model": "apsys/saiga_3_8b", "moviesmc": 0.3472222222222222, "booksmc": 0.2800829875518672, "model_dtype": "torch.float16", "ppl": 0}]
189
  for file in glob.glob("./m_data/model_data/external/*.json"):
190
  with open(file) as f:
191
 
 
185
  # shutil.rmtree("./data")
186
  download_dataset("Vikhrmodels/s-openbench-eval", "m_data")
187
  import glob
188
+ data_list = [{"musicmc": 0.3021276595744681, "lawmc": 0.2800829875518672, "model": "apsys/saiga_3_8b", "moviesmc": 0.3472222222222222, "booksmc": 0.2800829875518672, "model_dtype": "torch.float16", "ppl": 0, 'mmluproru':0}]
189
  for file in glob.glob("./m_data/model_data/external/*.json"):
190
  with open(file) as f:
191
 
src/display/utils.py CHANGED
@@ -53,6 +53,7 @@ class Tasks(Enum):
53
  movies = Task("moviesmc", "acc", "moviesmc")
54
  music = Task("musicmc", "acc", "musicmc")
55
  law = Task("lawmc", "acc", "lawmc")
 
56
 
57
 
58
  # These classes are for user facing column names,
@@ -77,7 +78,7 @@ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("model", "ma
77
  for task in Tasks:
78
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
79
  # # Model information
80
- auto_eval_column_dict.append(["avg", ColumnContent, ColumnContent("Type", "number", 0)])
81
  auto_eval_column_dict.append(["ppl", ColumnContent, ColumnContent("Type", "number", 0)])
82
  auto_eval_column_dict.append(["model_dtype", ColumnContent, ColumnContent("Type", "number", 0)])
83
  # auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
 
53
  movies = Task("moviesmc", "acc", "moviesmc")
54
  music = Task("musicmc", "acc", "musicmc")
55
  law = Task("lawmc", "acc", "lawmc")
56
+ mmluproru = Task("mmluproru", "acc", "mmluproru")
57
 
58
 
59
  # These classes are for user facing column names,
 
78
  for task in Tasks:
79
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
80
  # # Model information
81
+ auto_eval_column_dict.append(["avg ⬆️", ColumnContent, ColumnContent("Type", "number", 1,0,1)])
82
  auto_eval_column_dict.append(["ppl", ColumnContent, ColumnContent("Type", "number", 0)])
83
  auto_eval_column_dict.append(["model_dtype", ColumnContent, ColumnContent("Type", "number", 0)])
84
  # auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
src/leaderboard/build_leaderboard.py CHANGED
@@ -66,9 +66,13 @@ def build_leadearboard_df():
66
  with open(f"{os.path.abspath(DATA_PATH)}/leaderboard.json", "r", encoding="utf-8") as eval_file:
67
  f=json.load(eval_file)
68
  print(f)
69
-
70
- leaderboard_df = pd.DataFrame.from_records(f)[['model','moviesmc','musicmc','lawmc','booksmc','model_dtype','ppl']]
71
- leaderboard_df['avg'] = leaderboard_df[['moviesmc','musicmc','lawmc','booksmc']].mean(axis=1)
 
 
 
 
72
  numeric_cols = leaderboard_df.select_dtypes(include=['number']).columns
73
  leaderboard_df[numeric_cols] = leaderboard_df[numeric_cols].round(3)
74
  return leaderboard_df.copy()
 
66
  with open(f"{os.path.abspath(DATA_PATH)}/leaderboard.json", "r", encoding="utf-8") as eval_file:
67
  f=json.load(eval_file)
68
  print(f)
69
+ df = pd.DataFrame.from_records(f)
70
+ if 'mmluproru' in list(df.columns):
71
+ df['mmluproru'] = df['mmluproru'].fillna(0)
72
+ else:
73
+ df['mmluproru'] = 0
74
+ leaderboard_df = [['model','mmluproru','moviesmc','musicmc','lawmc','booksmc','model_dtype','ppl']]
75
+ leaderboard_df['avg'] = leaderboard_df[['moviesmc','musicmc','lawmc','booksmc','mmluproru']].mean(axis=1)
76
  numeric_cols = leaderboard_df.select_dtypes(include=['number']).columns
77
  leaderboard_df[numeric_cols] = leaderboard_df[numeric_cols].round(3)
78
  return leaderboard_df.copy()