Spaces:
Configuration error
Configuration error
# Adapted from Optimizing Network Structure for 3D Human Pose Estimation (ICCV 2019) (https://github.com/CHUNYUWANG/lcn-pose/blob/master/tools/data.py) | |
import numpy as np | |
import os, sys | |
import random | |
import copy | |
from lib.utils.tools import read_pkl | |
from lib.utils.utils_data import split_clips | |
random.seed(0) | |
class DataReaderH36M(object): | |
def __init__(self, n_frames, sample_stride, data_stride_train, data_stride_test, read_confidence=True, dt_root = 'data/motion3d', dt_file = 'h36m_cpn_cam_source.pkl'): | |
self.gt_trainset = None | |
self.gt_testset = None | |
self.split_id_train = None | |
self.split_id_test = None | |
self.test_hw = None | |
self.dt_dataset = read_pkl('%s/%s' % (dt_root, dt_file)) | |
self.n_frames = n_frames | |
self.sample_stride = sample_stride | |
self.data_stride_train = data_stride_train | |
self.data_stride_test = data_stride_test | |
self.read_confidence = read_confidence | |
def read_2d(self): | |
trainset = self.dt_dataset['train']['joint_2d'][::self.sample_stride, :, :2].astype(np.float32) # [N, 17, 2] | |
testset = self.dt_dataset['test']['joint_2d'][::self.sample_stride, :, :2].astype(np.float32) # [N, 17, 2] | |
# map to [-1, 1] | |
for idx, camera_name in enumerate(self.dt_dataset['train']['camera_name']): | |
if camera_name == '54138969' or camera_name == '60457274': | |
res_w, res_h = 1000, 1002 | |
elif camera_name == '55011271' or camera_name == '58860488': | |
res_w, res_h = 1000, 1000 | |
else: | |
assert 0, '%d data item has an invalid camera name' % idx | |
trainset[idx, :, :] = trainset[idx, :, :] / res_w * 2 - [1, res_h / res_w] | |
for idx, camera_name in enumerate(self.dt_dataset['test']['camera_name']): | |
if camera_name == '54138969' or camera_name == '60457274': | |
res_w, res_h = 1000, 1002 | |
elif camera_name == '55011271' or camera_name == '58860488': | |
res_w, res_h = 1000, 1000 | |
else: | |
assert 0, '%d data item has an invalid camera name' % idx | |
testset[idx, :, :] = testset[idx, :, :] / res_w * 2 - [1, res_h / res_w] | |
if self.read_confidence: | |
if 'confidence' in self.dt_dataset['train'].keys(): | |
train_confidence = self.dt_dataset['train']['confidence'][::self.sample_stride].astype(np.float32) | |
test_confidence = self.dt_dataset['test']['confidence'][::self.sample_stride].astype(np.float32) | |
if len(train_confidence.shape)==2: # (1559752, 17) | |
train_confidence = train_confidence[:,:,None] | |
test_confidence = test_confidence[:,:,None] | |
else: | |
# No conf provided, fill with 1. | |
train_confidence = np.ones(trainset.shape)[:,:,0:1] | |
test_confidence = np.ones(testset.shape)[:,:,0:1] | |
trainset = np.concatenate((trainset, train_confidence), axis=2) # [N, 17, 3] | |
testset = np.concatenate((testset, test_confidence), axis=2) # [N, 17, 3] | |
return trainset, testset | |
def read_3d(self): | |
train_labels = self.dt_dataset['train']['joint3d_image'][::self.sample_stride, :, :3].astype(np.float32) # [N, 17, 3] | |
test_labels = self.dt_dataset['test']['joint3d_image'][::self.sample_stride, :, :3].astype(np.float32) # [N, 17, 3] | |
# map to [-1, 1] | |
for idx, camera_name in enumerate(self.dt_dataset['train']['camera_name']): | |
if camera_name == '54138969' or camera_name == '60457274': | |
res_w, res_h = 1000, 1002 | |
elif camera_name == '55011271' or camera_name == '58860488': | |
res_w, res_h = 1000, 1000 | |
else: | |
assert 0, '%d data item has an invalid camera name' % idx | |
train_labels[idx, :, :2] = train_labels[idx, :, :2] / res_w * 2 - [1, res_h / res_w] | |
train_labels[idx, :, 2:] = train_labels[idx, :, 2:] / res_w * 2 | |
for idx, camera_name in enumerate(self.dt_dataset['test']['camera_name']): | |
if camera_name == '54138969' or camera_name == '60457274': | |
res_w, res_h = 1000, 1002 | |
elif camera_name == '55011271' or camera_name == '58860488': | |
res_w, res_h = 1000, 1000 | |
else: | |
assert 0, '%d data item has an invalid camera name' % idx | |
test_labels[idx, :, :2] = test_labels[idx, :, :2] / res_w * 2 - [1, res_h / res_w] | |
test_labels[idx, :, 2:] = test_labels[idx, :, 2:] / res_w * 2 | |
return train_labels, test_labels | |
def read_hw(self): | |
if self.test_hw is not None: | |
return self.test_hw | |
test_hw = np.zeros((len(self.dt_dataset['test']['camera_name']), 2)) | |
for idx, camera_name in enumerate(self.dt_dataset['test']['camera_name']): | |
if camera_name == '54138969' or camera_name == '60457274': | |
res_w, res_h = 1000, 1002 | |
elif camera_name == '55011271' or camera_name == '58860488': | |
res_w, res_h = 1000, 1000 | |
else: | |
assert 0, '%d data item has an invalid camera name' % idx | |
test_hw[idx] = res_w, res_h | |
self.test_hw = test_hw | |
return test_hw | |
def get_split_id(self): | |
if self.split_id_train is not None and self.split_id_test is not None: | |
return self.split_id_train, self.split_id_test | |
vid_list_train = self.dt_dataset['train']['source'][::self.sample_stride] # (1559752,) | |
vid_list_test = self.dt_dataset['test']['source'][::self.sample_stride] # (566920,) | |
self.split_id_train = split_clips(vid_list_train, self.n_frames, data_stride=self.data_stride_train) | |
self.split_id_test = split_clips(vid_list_test, self.n_frames, data_stride=self.data_stride_test) | |
return self.split_id_train, self.split_id_test | |
def get_hw(self): | |
# Only Testset HW is needed for denormalization | |
test_hw = self.read_hw() # train_data (1559752, 2) test_data (566920, 2) | |
split_id_train, split_id_test = self.get_split_id() | |
test_hw = test_hw[split_id_test][:,0,:] # (N, 2) | |
return test_hw | |
def get_sliced_data(self): | |
train_data, test_data = self.read_2d() # train_data (1559752, 17, 3) test_data (566920, 17, 3) | |
train_labels, test_labels = self.read_3d() # train_labels (1559752, 17, 3) test_labels (566920, 17, 3) | |
split_id_train, split_id_test = self.get_split_id() | |
train_data, test_data = train_data[split_id_train], test_data[split_id_test] # (N, 27, 17, 3) | |
train_labels, test_labels = train_labels[split_id_train], test_labels[split_id_test] # (N, 27, 17, 3) | |
# ipdb.set_trace() | |
return train_data, test_data, train_labels, test_labels | |
def denormalize(self, test_data): | |
# data: (N, n_frames, 51) or data: (N, n_frames, 17, 3) | |
n_clips = test_data.shape[0] | |
test_hw = self.get_hw() | |
data = test_data.reshape([n_clips, -1, 17, 3]) | |
assert len(data) == len(test_hw) | |
# denormalize (x,y,z) coordiantes for results | |
for idx, item in enumerate(data): | |
res_w, res_h = test_hw[idx] | |
data[idx, :, :, :2] = (data[idx, :, :, :2] + np.array([1, res_h / res_w])) * res_w / 2 | |
data[idx, :, :, 2:] = data[idx, :, :, 2:] * res_w / 2 | |
return data # [n_clips, -1, 17, 3] | |