RAG_test_1 / app.py
la04's picture
Update app.py
05103a4 verified
raw
history blame
3.96 kB
import faiss
import numpy as np
import gradio as gr
from sentence_transformers import SentenceTransformer
import fitz # PyMuPDF für die Textextraktion aus PDFs
from transformers import pipeline
import logging
# Logging konfigurieren
logging.basicConfig(level=logging.INFO)
# Modelle laden
model = SentenceTransformer('all-MiniLM-L6-v2')
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2")
# FAISS-Index erstellen
def create_faiss_index(documents):
document_embeddings = model.encode(documents)
dimension = len(document_embeddings[0])
index = faiss.IndexFlatL2(dimension)
document_embeddings = np.array(document_embeddings).astype('float32')
index.add(document_embeddings)
return index, documents
# Text in kleinere Chunks aufteilen
def split_text_into_chunks(text, chunk_size=300):
words = text.split()
return [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
# Text aus PDF extrahieren
def extract_text_from_pdf(pdf_path):
doc = fitz.open(pdf_path)
text_chunks = []
for page_num in range(len(doc)):
page = doc.load_page(page_num)
text = page.get_text("text")
if not text.strip(): # Überprüfen, ob der Text leer ist
logging.warning(f"Leerer Text auf Seite {page_num}")
chunks = split_text_into_chunks(text)
text_chunks.extend(chunks)
return text_chunks
# Kontexte nach Relevanz bewerten
def rank_contexts_by_relevance(query, contexts):
query_embedding = model.encode([query])[0].astype('float32')
context_embeddings = model.encode(contexts)
scores = np.dot(query_embedding, context_embeddings.T) # Dot-Produkt zur Berechnung der Relevanz
ranked_contexts = sorted(zip(scores, contexts), key=lambda x: x[0], reverse=True)
return [context for _, context in ranked_contexts[:5]] # Nur die Top 5 Kontexte zurückgeben
# Suche und Bewertung
def search_and_rank_answers(query, index, documents, k=10):
query_embedding = model.encode([query])[0].astype('float32')
D, I = index.search(np.array([query_embedding]), k=k)
ranked_contexts = [documents[i] for i in I[0]]
top_contexts = rank_contexts_by_relevance(query, ranked_contexts)
ranked_answers = []
for context in top_contexts:
try:
result = qa_model(question=query, context=context)
ranked_answers.append((result['answer'], result['score']))
except Exception as e:
logging.warning(f"Fehler bei der Antwortgenerierung: {e}")
ranked_answers = sorted(ranked_answers, key=lambda x: x[1], reverse=True)
return [answer for answer, _ in ranked_answers]
# Antworten kombinieren
def combine_answers(answers):
# Kombiniert die Top 3 Antworten zu einer einzigen Antwort
return " ".join(answers[:3])
# Gesamtprozess
def chatbot_response(pdf_path, question):
logging.info(f"Frage: {question}")
# Text extrahieren
text_chunks = extract_text_from_pdf(pdf_path)
# FAISS-Index erstellen
index, documents = create_faiss_index(text_chunks)
# Suche nach Antworten
answers = search_and_rank_answers(question, index, documents, k=10)
# Antworten kombinieren
detailed_answer = combine_answers(answers)
logging.info(f"Antwort: {detailed_answer}")
return detailed_answer
# Gradio-Interface
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath")
question_input = gr.Textbox(label="Frage eingeben", placeholder="Stelle eine Frage zu dem PDF-Dokument")
response_output = gr.Textbox(label="Antwort")
interface = gr.Interface(
fn=chatbot_response,
inputs=[pdf_input, question_input],
outputs=response_output,
title="PDF-Fragebeantwortung mit FAISS und Transformers",
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Das System kombiniert mehrere Antworten, um präzisere Ergebnisse zu liefern."
)
if __name__ == "__main__":
interface.launch()