Spaces:
Sleeping
Sleeping
import faiss | |
import numpy as np | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
import fitz # PyMuPDF für die Textextraktion aus PDFs | |
from transformers import pipeline | |
import logging | |
# Logging konfigurieren | |
logging.basicConfig(level=logging.INFO) | |
# Modelle laden | |
model = SentenceTransformer('all-MiniLM-L6-v2') | |
qa_model = pipeline("question-answering", model="deepset/roberta-base-squad2") | |
# FAISS-Index erstellen | |
def create_faiss_index(documents): | |
document_embeddings = model.encode(documents) | |
dimension = len(document_embeddings[0]) | |
index = faiss.IndexFlatL2(dimension) | |
document_embeddings = np.array(document_embeddings).astype('float32') | |
index.add(document_embeddings) | |
return index, documents | |
# Text in kleinere Chunks aufteilen | |
def split_text_into_chunks(text, chunk_size=300): | |
words = text.split() | |
return [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)] | |
# Text aus PDF extrahieren | |
def extract_text_from_pdf(pdf_path): | |
doc = fitz.open(pdf_path) | |
text_chunks = [] | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text = page.get_text("text") | |
if not text.strip(): # Überprüfen, ob der Text leer ist | |
logging.warning(f"Leerer Text auf Seite {page_num}") | |
chunks = split_text_into_chunks(text) | |
text_chunks.extend(chunks) | |
return text_chunks | |
# Kontexte nach Relevanz bewerten | |
def rank_contexts_by_relevance(query, contexts): | |
query_embedding = model.encode([query])[0].astype('float32') | |
context_embeddings = model.encode(contexts) | |
scores = np.dot(query_embedding, context_embeddings.T) # Dot-Produkt zur Berechnung der Relevanz | |
ranked_contexts = sorted(zip(scores, contexts), key=lambda x: x[0], reverse=True) | |
return [context for _, context in ranked_contexts[:5]] # Nur die Top 5 Kontexte zurückgeben | |
# Suche und Bewertung | |
def search_and_rank_answers(query, index, documents, k=10): | |
query_embedding = model.encode([query])[0].astype('float32') | |
D, I = index.search(np.array([query_embedding]), k=k) | |
ranked_contexts = [documents[i] for i in I[0]] | |
top_contexts = rank_contexts_by_relevance(query, ranked_contexts) | |
ranked_answers = [] | |
for context in top_contexts: | |
try: | |
result = qa_model(question=query, context=context) | |
ranked_answers.append((result['answer'], result['score'])) | |
except Exception as e: | |
logging.warning(f"Fehler bei der Antwortgenerierung: {e}") | |
ranked_answers = sorted(ranked_answers, key=lambda x: x[1], reverse=True) | |
return [answer for answer, _ in ranked_answers] | |
# Antworten kombinieren | |
def combine_answers(answers): | |
# Kombiniert die Top 3 Antworten zu einer einzigen Antwort | |
return " ".join(answers[:3]) | |
# Gesamtprozess | |
def chatbot_response(pdf_path, question): | |
logging.info(f"Frage: {question}") | |
# Text extrahieren | |
text_chunks = extract_text_from_pdf(pdf_path) | |
# FAISS-Index erstellen | |
index, documents = create_faiss_index(text_chunks) | |
# Suche nach Antworten | |
answers = search_and_rank_answers(question, index, documents, k=10) | |
# Antworten kombinieren | |
detailed_answer = combine_answers(answers) | |
logging.info(f"Antwort: {detailed_answer}") | |
return detailed_answer | |
# Gradio-Interface | |
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath") | |
question_input = gr.Textbox(label="Frage eingeben", placeholder="Stelle eine Frage zu dem PDF-Dokument") | |
response_output = gr.Textbox(label="Antwort") | |
interface = gr.Interface( | |
fn=chatbot_response, | |
inputs=[pdf_input, question_input], | |
outputs=response_output, | |
title="PDF-Fragebeantwortung mit FAISS und Transformers", | |
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Das System kombiniert mehrere Antworten, um präzisere Ergebnisse zu liefern." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |