Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.document_loaders import TextLoader | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Funktion zum Laden und Indexieren eines Dokuments | |
def load_and_index_document(file_path: str): | |
loader = TextLoader(file_path) | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
chunks = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vector_store = FAISS.from_documents(chunks, embeddings) | |
return vector_store | |
# Antwortfunktion für den RAG-Chatbot | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, file): | |
# Dateipfad des hochgeladenen Dokuments | |
file_path = file.name | |
# Dokument laden und indexieren | |
vector_store = load_and_index_document(file_path) | |
# Historie und Systemnachricht aufbereiten | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
# Abruf relevanter Abschnitte aus dem Dokument | |
docs = vector_store.similarity_search(message, k=3) # Abrufen von 3 relevanten Dokumentabschnitten | |
context = "\n".join([doc.page_content for doc in docs]) | |
# Nachricht an das Modell | |
full_message = f"{context}\n\nUser: {message}\nAssistant:" | |
response = "" | |
try: | |
# Generierung der Antwort | |
for message in client.chat_completion( | |
[{"role": "system", "content": system_message}, {"role": "user", "content": full_message}], | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
except Exception as e: | |
yield f"An error occurred: {str(e)}" | |
# Gradio-UI erstellen | |
def create_gradio_ui(): | |
demo = gr.Interface( | |
fn=respond, | |
inputs=[ | |
gr.Textbox(value="You are a helpful assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
gr.File(label="Upload Document") # Datei-Upload | |
], | |
live=True | |
) | |
return demo | |
if __name__ == "__main__": | |
ui = create_gradio_ui() | |
ui.launch() | |