RAG_test_1 / app.py
la04's picture
Update app.py
23cbcf8 verified
raw
history blame
3.92 kB
import gradio as gr
import os
from langchain.vectorstores import Chroma # Chroma als Vektordatenbank
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import HuggingFaceHub
from langchain.text_splitter import RecursiveCharacterTextSplitter
list_llm = ["google/flan-t5-small", "sentence-transformers/all-MiniLM-L6-v2"]
def load_doc(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
def create_db(splits):
embeddings = HuggingFaceEmbeddings()
vectordb = Chroma.from_documents(splits, embeddings)
return vectordb
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={
"temperature": temperature,
"max_length": max_tokens,
"top_k": top_k,
}
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
def initialize_database(list_file_obj):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Datenbank erfolgreich erstellt!"
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
return qa_chain, "LLM erfolgreich initialisiert! Chatbot ist bereit."
def conversation(qa_chain, message, history):
formatted_chat_history = [(f"User: {m}", f"Assistant: {r}") for m, r in history]
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history
def demo():
with gr.Blocks() as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF Chatbot (Kostenlose Version)</h1></center>")
with gr.Row():
with gr.Column():
document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True)
db_btn = gr.Button("Erstelle Vektordatenbank")
db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
llm_btn = gr.Radio(["Flan-T5-Small", "MiniLM"], label="Verfügbare Modelle")
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, label="Temperature")
slider_maxtokens = gr.Slider(64, 512, value=256, label="Max Tokens")
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
with gr.Column():
chatbot = gr.Chatbot(height=400, type="messages")
msg = gr.Textbox(placeholder="Frage stellen...")
submit_btn = gr.Button("Absenden")
db_btn.click(initialize_database, [document], [vector_db, db_progress])
qachain_btn.click(initialize_LLM, [llm_btn, slider_temperature, slider_maxtokens, vector_db], [qa_chain])
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
demo.launch(debug=True)
if __name__ == "__main__":
demo()