RAG_test_1 / app.py
la04's picture
Update app.py
bf5014c verified
raw
history blame
5.43 kB
import gradio as gr
import os
from langchain.vectorstores import FAISS # Import für Vektordatenbank FAISS
from langchain.document_loaders import PyPDFLoader # PDF-Loader zum Laden der Dokumente
from langchain.embeddings import HuggingFaceEmbeddings # Embeddings-Erstellung mit Hugging Face-Modellen
from langchain.chains import ConversationalRetrievalChain # Chain für QA-Funktionalität
from langchain.memory import ConversationBufferMemory # Speichern des Chat-Verlaufs im Speicher
from langchain.llms import HuggingFaceHub # Für das Laden der Modelle von Hugging Face Hub
from langchain.text_splitter import RecursiveCharacterTextSplitter # Aufteilen von Dokumenten in Chunks
# Liste der LLM-Modelle (leichte CPU-freundliche Modelle)
list_llm = ["google/flan-t5-small", "distilbert-base-uncased"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# PDF-Dokument laden und in Chunks aufteilen
def load_doc(list_file_path):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load()) # Laden der Seiten aus PDF
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32) # Chunks für CPU
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Vektordatenbank erstellen
def create_db(splits):
embeddings = HuggingFaceEmbeddings() # Erstellen der Embeddings mit Hugging Face
vectordb = FAISS.from_documents(splits, embeddings)
return vectordb
# Initialisierung des ConversationalRetrievalChain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs={
"temperature": temperature,
"max_length": max_tokens,
"top_k": top_k,
}
)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False
)
return qa_chain
# Initialisierung der Datenbank
def initialize_database(list_file_obj):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Datenbank erfolgreich erstellt!"
# Initialisierung des LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
return qa_chain, "LLM erfolgreich initialisiert! Chatbot ist bereit."
# Chat-Historie formatieren
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
# Konversationsfunktion
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
response_answer = response["answer"]
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history
# Gradio-Frontend
def demo():
with gr.Blocks() as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
with gr.Row():
with gr.Column():
gr.Markdown("### Schritt 1: Lade PDF-Dokument hoch")
document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True)
db_btn = gr.Button("Erstelle Vektordatenbank")
db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
gr.Markdown("### Schritt 2: Wähle LLM und Einstellungen")
llm_btn = gr.Radio(list_llm_simple, label="Verfügbare Modelle", value=list_llm_simple[0], type="index")
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(64, 512, value=256, step=64, label="Max Tokens")
slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-k")
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
llm_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
with gr.Column():
gr.Markdown("### Schritt 3: Stelle Fragen an dein Dokument")
chatbot = gr.Chatbot(height=400, type="messages")
msg = gr.Textbox(placeholder="Frage stellen...")
submit_btn = gr.Button("Absenden")
db_btn.click(initialize_database, [document], [vector_db, db_progress])
qachain_btn.click(initialize_LLM, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress])
msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
demo.launch(debug=True)
if __name__ == "__main__":
demo()