Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from langchain.vectorstores import FAISS # Import für Vektordatenbank FAISS | |
from langchain.document_loaders import PyPDFLoader # PDF-Loader zum Laden der Dokumente | |
from langchain.embeddings import HuggingFaceEmbeddings # Embeddings-Erstellung mit Hugging Face-Modellen | |
from langchain.chains import ConversationalRetrievalChain # Chain für QA-Funktionalität | |
from langchain.memory import ConversationBufferMemory # Speichern des Chat-Verlaufs im Speicher | |
from langchain.llms import HuggingFaceHub # Für das Laden der Modelle von Hugging Face Hub | |
from langchain.text_splitter import RecursiveCharacterTextSplitter # Aufteilen von Dokumenten in Chunks | |
# Liste der LLM-Modelle (leichte CPU-freundliche Modelle) | |
list_llm = ["google/flan-t5-small", "distilbert-base-uncased"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
# PDF-Dokument laden und in Chunks aufteilen | |
def load_doc(list_file_path): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) # Laden der Seiten aus PDF | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32) # Chunks für CPU | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
# Vektordatenbank erstellen | |
def create_db(splits): | |
embeddings = HuggingFaceEmbeddings() # Erstellen der Embeddings mit Hugging Face | |
vectordb = FAISS.from_documents(splits, embeddings) | |
return vectordb | |
# Initialisierung des ConversationalRetrievalChain | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): | |
llm = HuggingFaceHub( | |
repo_id=llm_model, | |
model_kwargs={ | |
"temperature": temperature, | |
"max_length": max_tokens, | |
"top_k": top_k, | |
} | |
) | |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
retriever = vector_db.as_retriever() | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False | |
) | |
return qa_chain | |
# Initialisierung der Datenbank | |
def initialize_database(list_file_obj): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
doc_splits = load_doc(list_file_path) | |
vector_db = create_db(doc_splits) | |
return vector_db, "Datenbank erfolgreich erstellt!" | |
# Initialisierung des LLM | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db): | |
llm_name = list_llm[llm_option] | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db) | |
return qa_chain, "LLM erfolgreich initialisiert! Chatbot ist bereit." | |
# Chat-Historie formatieren | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
# Konversationsfunktion | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history | |
# Gradio-Frontend | |
def demo(): | |
with gr.Blocks() as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Schritt 1: Lade PDF-Dokument hoch") | |
document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True) | |
db_btn = gr.Button("Erstelle Vektordatenbank") | |
db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False) | |
gr.Markdown("### Schritt 2: Wähle LLM und Einstellungen") | |
llm_btn = gr.Radio(list_llm_simple, label="Verfügbare Modelle", value=list_llm_simple[0], type="index") | |
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Temperature") | |
slider_maxtokens = gr.Slider(64, 512, value=256, step=64, label="Max Tokens") | |
slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-k") | |
qachain_btn = gr.Button("Initialisiere QA-Chatbot") | |
llm_progress = gr.Textbox(value="Nicht initialisiert", show_label=False) | |
with gr.Column(): | |
gr.Markdown("### Schritt 3: Stelle Fragen an dein Dokument") | |
chatbot = gr.Chatbot(height=400, type="messages") | |
msg = gr.Textbox(placeholder="Frage stellen...") | |
submit_btn = gr.Button("Absenden") | |
db_btn.click(initialize_database, [document], [vector_db, db_progress]) | |
qachain_btn.click(initialize_LLM, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress]) | |
msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot]) | |
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot]) | |
demo.launch(debug=True) | |
if __name__ == "__main__": | |
demo() | |