Spaces:
Sleeping
Sleeping
import faiss | |
import numpy as np | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
import fitz # PyMuPDF für die Textextraktion aus PDFs | |
from transformers import pipeline | |
import logging | |
# Logging konfigurieren | |
logging.basicConfig(level=logging.INFO) | |
# Schritt 1: Lade das Modell für die Embeddings | |
model = SentenceTransformer('all-mpnet-base-v2') # Besser geeignet für längere Texte | |
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad") | |
# FAISS-Index erstellen | |
def create_faiss_index(documents): | |
document_embeddings = model.encode(documents) | |
dimension = len(document_embeddings[0]) | |
index = faiss.IndexFlatL2(dimension) | |
document_embeddings = np.array(document_embeddings).astype('float32') | |
index.add(document_embeddings) # Füge Dokumente zum Index hinzu | |
return index, documents | |
# Schritt 2: Extrahiere Text aus einem PDF (kleinere Abschnitte, z. B. Absätze) | |
def extract_text_from_pdf(pdf_path): | |
doc = fitz.open(pdf_path) | |
text_chunks = [] | |
for page_num in range(len(doc)): | |
page = doc.load_page(page_num) | |
text = page.get_text("text") | |
# Text in kleinere Abschnitte (z. B. Absätze) unterteilen | |
chunks = text.split('\n\n') # Unterteilen nach Absätzen | |
text_chunks.extend(chunks) | |
return text_chunks | |
# Schritt 3: Suche nach mehreren passenden Abschnitten | |
def search_documents(query, index, documents, k=5): | |
query_embedding = model.encode([query])[0].astype('float32') | |
D, I = index.search(np.array([query_embedding]), k=k) # Suche nach den Top k Treffern | |
results = [documents[i] for i in I[0]] | |
return " ".join(results) # Kombiniere die Top-Ergebnisse | |
# Schritt 4: Nutze das QA-Modell, um eine präzise Antwort zu generieren | |
def generate_answer(context, question): | |
result = qa_model(question=question, context=context) | |
return result['answer'] | |
# Schritt 5: Gesamtprozess (Fragebeantwortung) | |
def chatbot_response(pdf_path, question): | |
logging.info(f"Frage: {question}") | |
# Textextraktion aus der PDF | |
text_chunks = extract_text_from_pdf(pdf_path) | |
# FAISS-Index erstellen | |
index, documents = create_faiss_index(text_chunks) | |
# Suche nach Kontext | |
context = search_documents(question, index, documents, k=5) | |
logging.info(f"Gefundener Kontext: {context[:500]}") # Nur die ersten 500 Zeichen anzeigen | |
# Antwort generieren | |
answer = generate_answer(context, question) | |
return answer | |
# Gradio-Interface | |
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath") # Ändert type="file" zu type="filepath" | |
question_input = gr.Textbox(label="Frage eingeben", placeholder="Stelle eine Frage zu dem PDF-Dokument") | |
response_output = gr.Textbox(label="Antwort") | |
# Gradio-Interface erstellen | |
interface = gr.Interface( | |
fn=chatbot_response, | |
inputs=[pdf_input, question_input], | |
outputs=response_output, | |
title="PDF-Fragebeantwortung mit FAISS und Transformers", | |
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Das System verwendet FAISS, Transformers und ein QA-Modell, um präzise Antworten zu liefern." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |