Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from langchain.vectorstores import Chroma | |
from langchain.document_loaders import PyPDFLoader # Korrekt importiert | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain.prompts import PromptTemplate | |
from pdf2image import convert_from_path | |
from transformers import LayoutLMv3Processor, AutoModelForTokenClassification | |
# OCR-Modell einrichten | |
class LayoutLMv3OCR: | |
def __init__(self): | |
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") | |
self.model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base") | |
def extract_text(self, pdf_path): | |
images = convert_from_path(pdf_path) | |
text_pages = [] | |
for image in images: | |
inputs = self.processor(images=image, return_tensors="pt") | |
outputs = self.model(**inputs) | |
text = self.processor.batch_decode(outputs.logits, skip_special_tokens=True)[0] | |
text_pages.append(text) | |
return text_pages | |
ocr_tool = LayoutLMv3OCR() | |
def process_pdf_and_query(pdf_path, question): | |
loader = PyPDFLoader(pdf_path) | |
documents = loader.load() | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vectordb = Chroma.from_documents(documents, embeddings) | |
retriever = vectordb.as_retriever() | |
prompt_template = "Beantworte die folgende Frage basierend auf dem Dokument: {context}\nFrage: {question}\nAntwort:" | |
prompt = PromptTemplate(input_variables=["context", "question"], template=prompt_template) | |
qa_chain = RetrievalQA.from_chain_type(llm=None, retriever=retriever, chain_type_kwargs={"prompt": prompt}) | |
response = qa_chain.run(input_documents=documents, question=question) | |
return response | |
def chatbot_response(pdf, question): | |
# Gradio gibt uns die PDF als NamedString, wir extrahieren den Inhalt als Byte-Stream | |
pdf_path = "/mnt/data/uploaded_pdf.pdf" # Verwendet das persistente Verzeichnis von Hugging Face Spaces | |
# Extrahiere den Inhalt der Datei als Bytes | |
pdf_content = pdf.read() # Hier holen wir den Inhalt der PDF als Byte-Stream | |
# Speichern des Byte-Streams von der Datei | |
with open(pdf_path, "wb") as f: | |
f.write(pdf_content) | |
# OCR-Text extrahieren | |
extracted_text = ocr_tool.extract_text(pdf_path) | |
# Frage beantworten basierend auf der PDF und OCR-Inhalten | |
answer = process_pdf_and_query(pdf_path, question) | |
return answer | |
# Gradio Interface | |
pdf_input = gr.File(label="PDF-Datei hochladen") | |
question_input = gr.Textbox(label="Frage eingeben") | |
response_output = gr.Textbox(label="Antwort") | |
interface = gr.Interface( | |
fn=chatbot_response, | |
inputs=[pdf_input, question_input], | |
outputs=response_output, | |
title="RAG Chatbot mit PDF-Unterstützung", | |
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |