RAG_test_1 / app.py
la04's picture
Update app.py
04dd8cd verified
import gradio as gr
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFaceEndpoint
from langchain_community.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
# API-Token aus Umgebungsvariable laden
api_token = os.getenv("HF_Token")
# Modelle für Auswahl
list_llm = [
"google/flan-t5-base", # Leichtes Instruktionsmodell
"sentence-transformers/all-MiniLM-L6-v2", # Embeddings-optimiertes Modell
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", # Pythia 12B
"bigscience/bloom-3b", # Multilingualer BLOOM
"bigscience/bloom-1b7" # Leichtes BLOOM-Modell
]
# Dokumentenverarbeitung
def load_doc(list_file_path):
if not list_file_path:
return [], "Fehler: Keine Dokumente gefunden!"
loaders = [PyPDFLoader(x) for x in list_file_path]
documents = []
for loader in loaders:
documents.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
return text_splitter.split_documents(documents)
# Erstelle Vektordatenbank
def create_db(splits):
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return FAISS.from_documents(splits, embeddings)
# Initialisiere Datenbank
def initialize_database(list_file_obj):
if not list_file_obj:
return None, "Fehler: Keine Dateien hochgeladen!"
list_file_path = list_file_obj # Dateipfade von den hochgeladenen Dateien
doc_splits = load_doc(list_file_path)
vector_db = create_db(doc_splits)
return vector_db, "Datenbank erfolgreich erstellt!"
# Initialisiere LLM-Kette
def initialize_llmchain(llm_model, temperature, max_tokens, vector_db):
if vector_db is None:
return None, "Fehler: Keine Vektordatenbank verfügbar."
if "pythia" in llm_model or "bloom" in llm_model:
max_tokens = min(max_tokens, 2048)
else:
max_tokens = min(max_tokens, 1024)
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens
)
memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True
)
return qa_chain
# Initialisiere LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, vector_db):
if vector_db is None:
return None, "Fehler: Datenbank wurde nicht erstellt!"
llm_name = list_llm[llm_option]
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, vector_db)
return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
# Konversation
def conversation(qa_chain, message, history):
if qa_chain is None:
return None, [{"role": "system", "content": "Die QA-Kette wurde nicht initialisiert."}], history
if not message.strip():
return qa_chain, [{"role": "system", "content": "Bitte eine Frage eingeben!"}], history
response = qa_chain.invoke({"question": message, "chat_history": history})
response_text = response.get("answer", "Keine Antwort verfügbar.")
formatted_response = history + [{"role": "user", "content": message}, {"role": "assistant", "content": response_text}]
return qa_chain, formatted_response, formatted_response
# Gradio UI
def demo():
with gr.Blocks() as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.Markdown("<center><h1>RAG-Chatbot mit Pythia und BLOOM (CPU-kompatibel)</h1></center>")
with gr.Row():
with gr.Column():
document = gr.Files(label="PDF-Dokument hochladen", type="filepath", file_types=[".pdf"], file_count="multiple")
db_btn = gr.Button("Erstelle Vektordatenbank")
db_status = gr.Textbox(label="Datenbankstatus", value="Nicht erstellt", interactive=False)
llm_btn = gr.Radio(
["Flan-T5 Base", "MiniLM", "Pythia 12B", "BLOOM 3B", "BLOOM 1.7B"],
label="Verfügbare LLMs",
value="Flan-T5 Base",
type="index"
)
slider_temperature = gr.Slider(0.01, 1.0, 0.5, label="Temperature")
slider_maxtokens = gr.Slider(1, 2048, 512, label="Max Tokens")
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
llm_status = gr.Textbox(label="Chatbot-Status", value="Nicht initialisiert", interactive=False)
with gr.Column():
chatbot = gr.Chatbot(label="Chatbot", height=400, type="messages")
msg = gr.Textbox(label="Frage stellen")
submit_btn = gr.Button("Absenden")
# Events verknüpfen
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_status])
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, vector_db], outputs=[qa_chain, llm_status])
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, chatbot, chatbot])
demo.launch(debug=True)
if __name__ == "__main__":
demo()