Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
-
from transformers import LayoutLMv3Processor,
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
from pdf2image import convert_from_path
|
@@ -10,16 +10,20 @@ import os
|
|
10 |
|
11 |
class LayoutLMv3OCR:
|
12 |
def __init__(self):
|
|
|
13 |
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
|
14 |
-
self.model =
|
15 |
|
16 |
def extract_text(self, pdf_path):
|
17 |
images = convert_from_path(pdf_path)
|
18 |
text_pages = []
|
19 |
for image in images:
|
|
|
20 |
inputs = self.processor(images=image, return_tensors="pt")
|
21 |
-
|
22 |
-
|
|
|
|
|
23 |
text_pages.append(text)
|
24 |
return text_pages
|
25 |
|
@@ -48,25 +52,4 @@ def chatbot_response(pdf, question):
|
|
48 |
with open(pdf_path, "wb") as f:
|
49 |
f.write(pdf.read())
|
50 |
|
51 |
-
extracted_text = ocr_tool.
|
52 |
-
answer = process_pdf_and_query(pdf_path, question)
|
53 |
-
|
54 |
-
# Lösche die gespeicherte PDF-Datei nach der Verarbeitung
|
55 |
-
os.remove(pdf_path)
|
56 |
-
|
57 |
-
return answer
|
58 |
-
|
59 |
-
pdf_input = gr.File(label="PDF-Datei hochladen")
|
60 |
-
question_input = gr.Textbox(label="Frage eingeben")
|
61 |
-
response_output = gr.Textbox(label="Antwort")
|
62 |
-
|
63 |
-
interface = gr.Interface(
|
64 |
-
fn=chatbot_response,
|
65 |
-
inputs=[pdf_input, question_input],
|
66 |
-
outputs=response_output,
|
67 |
-
title="RAG Chatbot mit PDF-Unterstützung",
|
68 |
-
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt."
|
69 |
-
)
|
70 |
-
|
71 |
-
if __name__ == "__main__":
|
72 |
-
interface.launch(share=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from langchain_community.vectorstores import Chroma
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from transformers import LayoutLMv3Processor, AutoModelForTokenClassification
|
6 |
from langchain.chains import RetrievalQA
|
7 |
from langchain.prompts import PromptTemplate
|
8 |
from pdf2image import convert_from_path
|
|
|
10 |
|
11 |
class LayoutLMv3OCR:
|
12 |
def __init__(self):
|
13 |
+
# Lade den LayoutLMv3-Prozessor und das Modell für Token-Klassifikation
|
14 |
self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
|
15 |
+
self.model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base")
|
16 |
|
17 |
def extract_text(self, pdf_path):
|
18 |
images = convert_from_path(pdf_path)
|
19 |
text_pages = []
|
20 |
for image in images:
|
21 |
+
# Verarbeite die Bilddaten mit LayoutLMv3
|
22 |
inputs = self.processor(images=image, return_tensors="pt")
|
23 |
+
# Führe Vorhersagen durch
|
24 |
+
outputs = self.model(**inputs)
|
25 |
+
# Extrahiere den Text aus den Vorhersagen (falls dies vorgesehen ist)
|
26 |
+
text = self.processor.batch_decode(outputs.logits, skip_special_tokens=True)[0]
|
27 |
text_pages.append(text)
|
28 |
return text_pages
|
29 |
|
|
|
52 |
with open(pdf_path, "wb") as f:
|
53 |
f.write(pdf.read())
|
54 |
|
55 |
+
extracted_text = ocr_tool.extr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|