Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,6 +22,11 @@ def create_faiss_index(documents):
|
|
22 |
index.add(document_embeddings)
|
23 |
return index, documents
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
# Text aus PDF extrahieren
|
26 |
def extract_text_from_pdf(pdf_path):
|
27 |
doc = fitz.open(pdf_path)
|
@@ -29,45 +34,49 @@ def extract_text_from_pdf(pdf_path):
|
|
29 |
for page_num in range(len(doc)):
|
30 |
page = doc.load_page(page_num)
|
31 |
text = page.get_text("text")
|
32 |
-
chunks = text
|
33 |
text_chunks.extend(chunks)
|
34 |
return text_chunks
|
35 |
|
36 |
-
# Suche
|
37 |
-
def
|
38 |
query_embedding = model.encode([query])[0].astype('float32')
|
39 |
-
D, I = index.search(np.array([query_embedding]), k=k)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
def generate_detailed_answer(contexts, question):
|
45 |
-
detailed_answer = []
|
46 |
-
for context in contexts:
|
47 |
try:
|
48 |
-
result = qa_model(question=
|
49 |
-
|
50 |
except Exception as e:
|
51 |
-
logging.warning(f"Fehler
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Gesamtprozess
|
55 |
def chatbot_response(pdf_path, question):
|
56 |
logging.info(f"Frage: {question}")
|
57 |
-
|
58 |
# Text extrahieren
|
59 |
text_chunks = extract_text_from_pdf(pdf_path)
|
60 |
|
61 |
# FAISS-Index erstellen
|
62 |
index, documents = create_faiss_index(text_chunks)
|
63 |
|
64 |
-
# Suche nach
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
answer = generate_detailed_answer(contexts, question)
|
70 |
-
return answer
|
71 |
|
72 |
# Gradio-Interface
|
73 |
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath")
|
@@ -79,7 +88,7 @@ interface = gr.Interface(
|
|
79 |
inputs=[pdf_input, question_input],
|
80 |
outputs=response_output,
|
81 |
title="PDF-Fragebeantwortung mit FAISS und Transformers",
|
82 |
-
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Das System
|
83 |
)
|
84 |
|
85 |
if __name__ == "__main__":
|
|
|
22 |
index.add(document_embeddings)
|
23 |
return index, documents
|
24 |
|
25 |
+
# Text in kleinere Chunks aufteilen
|
26 |
+
def split_text_into_chunks(text, chunk_size=300):
|
27 |
+
words = text.split()
|
28 |
+
return [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
29 |
+
|
30 |
# Text aus PDF extrahieren
|
31 |
def extract_text_from_pdf(pdf_path):
|
32 |
doc = fitz.open(pdf_path)
|
|
|
34 |
for page_num in range(len(doc)):
|
35 |
page = doc.load_page(page_num)
|
36 |
text = page.get_text("text")
|
37 |
+
chunks = split_text_into_chunks(text)
|
38 |
text_chunks.extend(chunks)
|
39 |
return text_chunks
|
40 |
|
41 |
+
# Suche und Bewertung
|
42 |
+
def search_and_rank_answers(query, index, documents, k=10):
|
43 |
query_embedding = model.encode([query])[0].astype('float32')
|
44 |
+
D, I = index.search(np.array([query_embedding]), k=k)
|
45 |
+
|
46 |
+
ranked_answers = []
|
47 |
+
for i, doc_index in enumerate(I[0]):
|
48 |
+
context = documents[doc_index]
|
|
|
|
|
|
|
49 |
try:
|
50 |
+
result = qa_model(question=query, context=context)
|
51 |
+
ranked_answers.append((result['answer'], D[0][i])) # (Antwort, Distanz)
|
52 |
except Exception as e:
|
53 |
+
logging.warning(f"Fehler bei der Antwortgenerierung: {e}")
|
54 |
+
|
55 |
+
# Antworten nach ihrer Relevanz sortieren
|
56 |
+
ranked_answers = sorted(ranked_answers, key=lambda x: x[1])
|
57 |
+
return [answer for answer, _ in ranked_answers]
|
58 |
+
|
59 |
+
# Antworten kombinieren
|
60 |
+
def combine_answers(answers):
|
61 |
+
return " ".join(answers[:3]) # Kombiniere die Top 3 Antworten
|
62 |
|
63 |
# Gesamtprozess
|
64 |
def chatbot_response(pdf_path, question):
|
65 |
logging.info(f"Frage: {question}")
|
66 |
+
|
67 |
# Text extrahieren
|
68 |
text_chunks = extract_text_from_pdf(pdf_path)
|
69 |
|
70 |
# FAISS-Index erstellen
|
71 |
index, documents = create_faiss_index(text_chunks)
|
72 |
|
73 |
+
# Suche nach Antworten
|
74 |
+
answers = search_and_rank_answers(question, index, documents, k=10)
|
75 |
+
|
76 |
+
# Antworten kombinieren
|
77 |
+
detailed_answer = combine_answers(answers)
|
78 |
|
79 |
+
return detailed_answer
|
|
|
|
|
80 |
|
81 |
# Gradio-Interface
|
82 |
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath")
|
|
|
88 |
inputs=[pdf_input, question_input],
|
89 |
outputs=response_output,
|
90 |
title="PDF-Fragebeantwortung mit FAISS und Transformers",
|
91 |
+
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Das System kombiniert mehrere Antworten, um präzisere Ergebnisse zu liefern."
|
92 |
)
|
93 |
|
94 |
if __name__ == "__main__":
|