Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,29 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
from langchain.vectorstores import FAISS
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain.llms import HuggingFaceHub
|
9 |
|
10 |
-
|
11 |
-
list_llm = ["google/flan-t5-small", "distilbert-base-uncased"] # Leichte Modelle für CPU
|
12 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
13 |
|
14 |
-
# PDF-Dokument laden und aufteilen
|
15 |
def load_doc(list_file_path):
|
16 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
17 |
pages = []
|
18 |
for loader in loaders:
|
19 |
pages.extend(loader.load())
|
20 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
21 |
-
chunk_size=512, # Kleinere Chunks für schnelleres Verarbeiten auf CPU
|
22 |
-
chunk_overlap=32
|
23 |
-
)
|
24 |
doc_splits = text_splitter.split_documents(pages)
|
25 |
return doc_splits
|
26 |
|
27 |
-
# Erstellen der Vektordatenbank
|
28 |
def create_db(splits):
|
29 |
embeddings = HuggingFaceEmbeddings()
|
30 |
vectordb = FAISS.from_documents(splits, embeddings)
|
31 |
return vectordb
|
32 |
|
33 |
-
# Initialisierung des LLM Chains
|
34 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
35 |
llm = HuggingFaceHub(
|
36 |
repo_id=llm_model,
|
@@ -40,12 +33,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
40 |
"top_k": top_k,
|
41 |
}
|
42 |
)
|
43 |
-
|
44 |
-
memory = ConversationBufferMemory(
|
45 |
-
memory_key="chat_history",
|
46 |
-
return_messages=True
|
47 |
-
)
|
48 |
-
|
49 |
retriever = vector_db.as_retriever()
|
50 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
51 |
llm,
|
@@ -57,14 +45,12 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
57 |
)
|
58 |
return qa_chain
|
59 |
|
60 |
-
# Initialisierung der Datenbank
|
61 |
def initialize_database(list_file_obj):
|
62 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
63 |
doc_splits = load_doc(list_file_path)
|
64 |
vector_db = create_db(doc_splits)
|
65 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
66 |
|
67 |
-
# Initialisierung des LLMs
|
68 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
69 |
llm_name = list_llm[llm_option]
|
70 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
|
@@ -77,7 +63,6 @@ def format_chat_history(message, chat_history):
|
|
77 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
78 |
return formatted_chat_history
|
79 |
|
80 |
-
# Chat-Funktion
|
81 |
def conversation(qa_chain, message, history):
|
82 |
formatted_chat_history = format_chat_history(message, history)
|
83 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
@@ -85,7 +70,6 @@ def conversation(qa_chain, message, history):
|
|
85 |
new_history = history + [(message, response_answer)]
|
86 |
return qa_chain, gr.update(value=""), new_history
|
87 |
|
88 |
-
# Gradio App erstellen
|
89 |
def demo():
|
90 |
with gr.Blocks() as demo:
|
91 |
vector_db = gr.State()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from langchain.vectorstores.faiss import FAISS # Direktimport
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
7 |
from langchain.memory import ConversationBufferMemory
|
8 |
from langchain.llms import HuggingFaceHub
|
9 |
|
10 |
+
list_llm = ["google/flan-t5-small", "distilbert-base-uncased"]
|
|
|
11 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
12 |
|
|
|
13 |
def load_doc(list_file_path):
|
14 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
15 |
pages = []
|
16 |
for loader in loaders:
|
17 |
pages.extend(loader.load())
|
18 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
|
|
|
|
|
|
19 |
doc_splits = text_splitter.split_documents(pages)
|
20 |
return doc_splits
|
21 |
|
|
|
22 |
def create_db(splits):
|
23 |
embeddings = HuggingFaceEmbeddings()
|
24 |
vectordb = FAISS.from_documents(splits, embeddings)
|
25 |
return vectordb
|
26 |
|
|
|
27 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
28 |
llm = HuggingFaceHub(
|
29 |
repo_id=llm_model,
|
|
|
33 |
"top_k": top_k,
|
34 |
}
|
35 |
)
|
36 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
|
|
|
|
|
|
|
|
37 |
retriever = vector_db.as_retriever()
|
38 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
39 |
llm,
|
|
|
45 |
)
|
46 |
return qa_chain
|
47 |
|
|
|
48 |
def initialize_database(list_file_obj):
|
49 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
50 |
doc_splits = load_doc(list_file_path)
|
51 |
vector_db = create_db(doc_splits)
|
52 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
53 |
|
|
|
54 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
55 |
llm_name = list_llm[llm_option]
|
56 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
|
|
|
63 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
64 |
return formatted_chat_history
|
65 |
|
|
|
66 |
def conversation(qa_chain, message, history):
|
67 |
formatted_chat_history = format_chat_history(message, history)
|
68 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
|
|
70 |
new_history = history + [(message, response_answer)]
|
71 |
return qa_chain, gr.update(value=""), new_history
|
72 |
|
|
|
73 |
def demo():
|
74 |
with gr.Blocks() as demo:
|
75 |
vector_db = gr.State()
|