Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
from langchain.vectorstores import
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
@@ -20,8 +20,7 @@ def load_doc(list_file_path):
|
|
20 |
return doc_splits
|
21 |
|
22 |
def create_db(splits):
|
23 |
-
|
24 |
-
vectordb = Chroma.from_documents(splits, embeddings)
|
25 |
return vectordb
|
26 |
|
27 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
@@ -30,7 +29,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
30 |
model_kwargs={
|
31 |
"temperature": temperature,
|
32 |
"max_length": max_tokens,
|
33 |
-
"top_k": top_k,
|
34 |
}
|
35 |
)
|
36 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
@@ -41,7 +39,6 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
41 |
chain_type="stuff",
|
42 |
memory=memory,
|
43 |
return_source_documents=True,
|
44 |
-
verbose=False
|
45 |
)
|
46 |
return qa_chain
|
47 |
|
@@ -51,10 +48,10 @@ def initialize_database(list_file_obj):
|
|
51 |
vector_db = create_db(doc_splits)
|
52 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
53 |
|
54 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens,
|
55 |
llm_name = list_llm[llm_option]
|
56 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens,
|
57 |
-
return qa_chain, "
|
58 |
|
59 |
def conversation(qa_chain, message, history):
|
60 |
formatted_chat_history = [(f"User: {m}", f"Assistant: {r}") for m, r in history]
|
@@ -67,10 +64,10 @@ def demo():
|
|
67 |
with gr.Blocks() as demo:
|
68 |
vector_db = gr.State()
|
69 |
qa_chain = gr.State()
|
70 |
-
gr.HTML("<center><h1>
|
71 |
with gr.Row():
|
72 |
with gr.Column():
|
73 |
-
document = gr.Files(
|
74 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
75 |
db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
|
76 |
llm_btn = gr.Radio(["Flan-T5-Small", "MiniLM"], label="Verfügbare Modelle")
|
@@ -79,7 +76,7 @@ def demo():
|
|
79 |
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
80 |
|
81 |
with gr.Column():
|
82 |
-
chatbot = gr.Chatbot(height=400
|
83 |
msg = gr.Textbox(placeholder="Frage stellen...")
|
84 |
submit_btn = gr.Button("Absenden")
|
85 |
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
+
from langchain.vectorstores import SimpleVectorStore # Direkt, ohne zusätzliche Abhängigkeiten
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
6 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
20 |
return doc_splits
|
21 |
|
22 |
def create_db(splits):
|
23 |
+
vectordb = SimpleVectorStore.from_documents(splits) # Speichern im Speicher
|
|
|
24 |
return vectordb
|
25 |
|
26 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
|
|
29 |
model_kwargs={
|
30 |
"temperature": temperature,
|
31 |
"max_length": max_tokens,
|
|
|
32 |
}
|
33 |
)
|
34 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
39 |
chain_type="stuff",
|
40 |
memory=memory,
|
41 |
return_source_documents=True,
|
|
|
42 |
)
|
43 |
return qa_chain
|
44 |
|
|
|
48 |
vector_db = create_db(doc_splits)
|
49 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
50 |
|
51 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, vector_db):
|
52 |
llm_name = list_llm[llm_option]
|
53 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, 3, vector_db)
|
54 |
+
return qa_chain, "Chatbot ist bereit."
|
55 |
|
56 |
def conversation(qa_chain, message, history):
|
57 |
formatted_chat_history = [(f"User: {m}", f"Assistant: {r}") for m, r in history]
|
|
|
64 |
with gr.Blocks() as demo:
|
65 |
vector_db = gr.State()
|
66 |
qa_chain = gr.State()
|
67 |
+
gr.HTML("<center><h1>PDF QA Chatbot (Kostenlose Version)</h1></center>")
|
68 |
with gr.Row():
|
69 |
with gr.Column():
|
70 |
+
document = gr.Files(file_types=[".pdf"], interactive=True)
|
71 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
72 |
db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
|
73 |
llm_btn = gr.Radio(["Flan-T5-Small", "MiniLM"], label="Verfügbare Modelle")
|
|
|
76 |
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
77 |
|
78 |
with gr.Column():
|
79 |
+
chatbot = gr.Chatbot(height=400)
|
80 |
msg = gr.Textbox(placeholder="Frage stellen...")
|
81 |
submit_btn = gr.Button("Absenden")
|
82 |
|