la04 commited on
Commit
2c20468
·
verified ·
1 Parent(s): c3c5997

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +215 -76
app.py CHANGED
@@ -1,77 +1,216 @@
1
- import torch
2
- from transformers import RagRetriever, RagTokenizer, RagSequenceForGeneration
3
  import gradio as gr
4
- from PyPDF2 import PdfReader
5
- import re
6
-
7
- # Laden des Tokenizers, des Retrievers und des Modells (auf CPU)
8
- model_name = "facebook/rag-token-nq"
9
- tokenizer = RagTokenizer.from_pretrained(model_name)
10
- retriever = RagRetriever.from_pretrained(model_name, index_name="exact")
11
- model = RagSequenceForGeneration.from_pretrained(model_name).to("cpu") # Modell auf CPU laden
12
-
13
- # Funktion zum Extrahieren und Bereinigen von Text aus PDF
14
- def extract_text_from_pdf(pdf_path):
15
- reader = PdfReader(pdf_path)
16
- text = ""
17
- for page in reader.pages:
18
- page_text = page.extract_text()
19
- if page_text:
20
- text += page_text
21
- return text
22
-
23
- def clean_text(text):
24
- # Entfernen unnötiger Zeichen, Reduktion von Leerzeichen
25
- text = re.sub(r'\s+', ' ', text)
26
- text = re.sub(r'[^\w\s.,-]', '', text)
27
- return text.strip()
28
-
29
- # Funktion zum Aufteilen langer Texte in Abschnitte
30
- def split_text_into_chunks(text, chunk_size=1000):
31
- words = text.split()
32
- chunks = [' '.join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
33
- return chunks
34
-
35
- # Hauptfunktion für die Fragebeantwortung mit RAG
36
- def chatbot_response(pdf_path, question):
37
- try:
38
- # PDF-Inhalt extrahieren und bereinigen
39
- context = clean_text(extract_text_from_pdf(pdf_path))
40
- if not context:
41
- return "Das Dokument enthält keinen Text oder konnte nicht gelesen werden."
42
-
43
- # Dokumenttext in Abschnitte aufteilen, um Speicher zu sparen
44
- chunks = split_text_into_chunks(context)
45
-
46
- # Antwortgenerierung mit minimalem Speicherverbrauch
47
- answers = []
48
- with torch.no_grad(): # Verhindert das Speichern von Gradienten (für CPU wichtig)
49
- for chunk in chunks:
50
- retriever.index = [chunk]
51
- inputs = tokenizer(question, return_tensors="pt").to("cpu") # Sicherstellen, dass Inputs auf CPU bleiben
52
- generated_ids = model.generate(**inputs, max_length=150) # Kürzere Antwortlänge
53
- answer = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
54
- if answer:
55
- answers.append(answer)
56
-
57
- final_answer = " / ".join(answers) if answers else "Keine spezifische Antwort gefunden."
58
- return final_answer
59
-
60
- except Exception as e:
61
- return f"Es ist ein Fehler aufgetreten: {str(e)}"
62
-
63
- # Gradio-Interface erstellen
64
- pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath")
65
- question_input = gr.Textbox(label="Frage eingeben", placeholder="Stelle eine Frage zu dem PDF-Dokument")
66
- response_output = gr.Textbox(label="Antwort", lines=4)
67
-
68
- interface = gr.Interface(
69
- fn=chatbot_response,
70
- inputs=[pdf_input, question_input],
71
- outputs=response_output,
72
- title="RAG PDF-Fragebeantwortung auf CPU",
73
- description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Das System verwendet Retrieval-Augmented Generation (RAG) auf CPU zur Beantwortung.",
74
- )
75
-
76
- # Interface für Hugging Face Spaces
77
- interface.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import os
3
+ api_token = os.getenv("HF_TOKEN")
4
+
5
+
6
+ from langchain_community.vectorstores import FAISS
7
+ from langchain_community.document_loaders import PyPDFLoader
8
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
9
+ from langchain_community.vectorstores import Chroma
10
+ from langchain.chains import ConversationalRetrievalChain
11
+ from langchain_community.embeddings import HuggingFaceEmbeddings
12
+ from langchain_community.llms import HuggingFacePipeline
13
+ from langchain.chains import ConversationChain
14
+ from langchain.memory import ConversationBufferMemory
15
+ from langchain_community.llms import HuggingFaceEndpoint
16
+ import torch
17
+
18
+ list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
19
+ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
20
+
21
+ # Load and split PDF document
22
+ def load_doc(list_file_path):
23
+ # Processing for one document only
24
+ # loader = PyPDFLoader(file_path)
25
+ # pages = loader.load()
26
+ loaders = [PyPDFLoader(x) for x in list_file_path]
27
+ pages = []
28
+ for loader in loaders:
29
+ pages.extend(loader.load())
30
+ text_splitter = RecursiveCharacterTextSplitter(
31
+ chunk_size = 1024,
32
+ chunk_overlap = 64
33
+ )
34
+ doc_splits = text_splitter.split_documents(pages)
35
+ return doc_splits
36
+
37
+ # Create vector database
38
+ def create_db(splits):
39
+ embeddings = HuggingFaceEmbeddings()
40
+ vectordb = FAISS.from_documents(splits, embeddings)
41
+ return vectordb
42
+
43
+
44
+ # Initialize langchain LLM chain
45
+ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
46
+ if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
47
+ llm = HuggingFaceEndpoint(
48
+ repo_id=llm_model,
49
+ huggingfacehub_api_token = api_token,
50
+ temperature = temperature,
51
+ max_new_tokens = max_tokens,
52
+ top_k = top_k,
53
+ )
54
+ else:
55
+ llm = HuggingFaceEndpoint(
56
+ huggingfacehub_api_token = api_token,
57
+ repo_id=llm_model,
58
+ temperature = temperature,
59
+ max_new_tokens = max_tokens,
60
+ top_k = top_k,
61
+ )
62
+
63
+ memory = ConversationBufferMemory(
64
+ memory_key="chat_history",
65
+ output_key='answer',
66
+ return_messages=True
67
+ )
68
+
69
+ retriever=vector_db.as_retriever()
70
+ qa_chain = ConversationalRetrievalChain.from_llm(
71
+ llm,
72
+ retriever=retriever,
73
+ chain_type="stuff",
74
+ memory=memory,
75
+ return_source_documents=True,
76
+ verbose=False,
77
+ )
78
+ return qa_chain
79
+
80
+ # Initialize database
81
+ def initialize_database(list_file_obj, progress=gr.Progress()):
82
+ # Create a list of documents (when valid)
83
+ list_file_path = [x.name for x in list_file_obj if x is not None]
84
+ # Load document and create splits
85
+ doc_splits = load_doc(list_file_path)
86
+ # Create or load vector database
87
+ vector_db = create_db(doc_splits)
88
+ return vector_db, "Database created!"
89
+
90
+ # Initialize LLM
91
+ def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
92
+ # print("llm_option",llm_option)
93
+ llm_name = list_llm[llm_option]
94
+ print("llm_name: ",llm_name)
95
+ qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
96
+ return qa_chain, "QA chain initialized. Chatbot is ready!"
97
+
98
+
99
+ def format_chat_history(message, chat_history):
100
+ formatted_chat_history = []
101
+ for user_message, bot_message in chat_history:
102
+ formatted_chat_history.append(f"User: {user_message}")
103
+ formatted_chat_history.append(f"Assistant: {bot_message}")
104
+ return formatted_chat_history
105
+
106
+
107
+ def conversation(qa_chain, message, history):
108
+ formatted_chat_history = format_chat_history(message, history)
109
+ # Generate response using QA chain
110
+ response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
111
+ response_answer = response["answer"]
112
+ if response_answer.find("Helpful Answer:") != -1:
113
+ response_answer = response_answer.split("Helpful Answer:")[-1]
114
+ response_sources = response["source_documents"]
115
+ response_source1 = response_sources[0].page_content.strip()
116
+ response_source2 = response_sources[1].page_content.strip()
117
+ response_source3 = response_sources[2].page_content.strip()
118
+ # Langchain sources are zero-based
119
+ response_source1_page = response_sources[0].metadata["page"] + 1
120
+ response_source2_page = response_sources[1].metadata["page"] + 1
121
+ response_source3_page = response_sources[2].metadata["page"] + 1
122
+ # Append user message and response to chat history
123
+ new_history = history + [(message, response_answer)]
124
+ return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
125
+
126
+
127
+ def upload_file(file_obj):
128
+ list_file_path = []
129
+ for idx, file in enumerate(file_obj):
130
+ file_path = file_obj.name
131
+ list_file_path.append(file_path)
132
+ return list_file_path
133
+
134
+
135
+ def demo():
136
+ # with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
137
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
138
+ vector_db = gr.State()
139
+ qa_chain = gr.State()
140
+ gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
141
+ gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
142
+ <b>Please do not upload confidential documents.</b>
143
+ """)
144
+ with gr.Row():
145
+ with gr.Column(scale = 86):
146
+ gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
147
+ with gr.Row():
148
+ document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
149
+ with gr.Row():
150
+ db_btn = gr.Button("Create vector database")
151
+ with gr.Row():
152
+ db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status",
153
+ gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
154
+ with gr.Row():
155
+ llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
156
+ with gr.Row():
157
+ with gr.Accordion("LLM input parameters", open=False):
158
+ with gr.Row():
159
+ slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
160
+ with gr.Row():
161
+ slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
162
+ with gr.Row():
163
+ slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
164
+ with gr.Row():
165
+ qachain_btn = gr.Button("Initialize Question Answering Chatbot")
166
+ with gr.Row():
167
+ llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status",
168
+
169
+ with gr.Column(scale = 200):
170
+ gr.Markdown("<b>Step 2 - Chat with your Document</b>")
171
+ chatbot = gr.Chatbot(height=505)
172
+ with gr.Accordion("Relevent context from the source document", open=False):
173
+ with gr.Row():
174
+ doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
175
+ source1_page = gr.Number(label="Page", scale=1)
176
+ with gr.Row():
177
+ doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
178
+ source2_page = gr.Number(label="Page", scale=1)
179
+ with gr.Row():
180
+ doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
181
+ source3_page = gr.Number(label="Page", scale=1)
182
+ with gr.Row():
183
+ msg = gr.Textbox(placeholder="Ask a question", container=True)
184
+ with gr.Row():
185
+ submit_btn = gr.Button("Submit")
186
+ clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
187
+
188
+ # Preprocessing events
189
+ db_btn.click(initialize_database, \
190
+ inputs=[document], \
191
+ outputs=[vector_db, db_progress])
192
+ qachain_btn.click(initialize_LLM, \
193
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
194
+ outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
195
+ inputs=None, \
196
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
197
+ queue=False)
198
+
199
+ # Chatbot events
200
+ msg.submit(conversation, \
201
+ inputs=[qa_chain, msg, chatbot], \
202
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
203
+ queue=False)
204
+ submit_btn.click(conversation, \
205
+ inputs=[qa_chain, msg, chatbot], \
206
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
207
+ queue=False)
208
+ clear_btn.click(lambda:[None,"",0,"",0,"",0], \
209
+ inputs=None, \
210
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
211
+ queue=False)
212
+ demo.queue().launch(debug=True)
213
+
214
+
215
+ if __name__ == "__main__":
216
+ demo()