Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import PyPDF2
|
3 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
-
from langchain.vectorstores import FAISS
|
5 |
-
from langchain.chains import RetrievalQA
|
6 |
-
from langchain.document_loaders import TextLoader
|
7 |
-
from langchain.prompts import PromptTemplate
|
8 |
-
from langchain.llms import OpenAI
|
9 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
-
|
11 |
-
# Funktion zum Extrahieren von Text aus PDF
|
12 |
-
def extract_text_from_pdf(pdf_path):
|
13 |
-
with open(pdf_path, 'rb') as file:
|
14 |
-
reader = PyPDF2.PdfReader(file)
|
15 |
-
text = ""
|
16 |
-
for page in reader.pages:
|
17 |
-
text += page.extract_text()
|
18 |
-
return text
|
19 |
-
|
20 |
-
# Funktion zum Erstellen von Embeddings und Indexierung
|
21 |
-
def create_embeddings_and_index(text):
|
22 |
-
# Text in kleinere Teile aufteilen
|
23 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
24 |
-
texts = text_splitter.split_text(text)
|
25 |
-
|
26 |
-
# Embeddings erzeugen
|
27 |
-
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
28 |
-
|
29 |
-
# Indexierung mit FAISS
|
30 |
-
db = FAISS.from_texts(texts, embeddings)
|
31 |
-
return db
|
32 |
-
|
33 |
-
# Funktion für die Frage-Antwort-Pipeline
|
34 |
-
def answer_question(db, question):
|
35 |
-
qa_chain = RetrievalQA.from_chain_type(llm=OpenAI(), retriever=db.as_retriever())
|
36 |
-
response = qa_chain.run(question)
|
37 |
-
return response
|
38 |
-
|
39 |
-
# Beispiel für die Nutzung
|
40 |
-
def main():
|
41 |
-
# Dokument-Pfad
|
42 |
-
pdf_path = 'path_to_your_pdf_document.pdf'
|
43 |
-
|
44 |
-
# PDF extrahieren
|
45 |
-
text = extract_text_from_pdf(pdf_path)
|
46 |
-
print(f"Text aus dem Dokument extrahiert: {text[:500]}...") # Nur ersten 500 Zeichen anzeigen
|
47 |
-
|
48 |
-
# Embeddings erstellen und Index erstellen
|
49 |
-
db = create_embeddings_and_index(text)
|
50 |
-
print("Embeddings und Index erfolgreich erstellt.")
|
51 |
-
|
52 |
-
# Frage stellen
|
53 |
-
question = "Was ist das Ziel dieses Dokuments?"
|
54 |
-
answer = answer_question(db, question)
|
55 |
-
print(f"Antwort auf die Frage '{question}': {answer}")
|
56 |
-
|
57 |
-
if __name__ == "__main__":
|
58 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|