Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,143 +1,91 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
|
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
-
from
|
6 |
-
from langchain_community.
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
-
from transformers import pipeline
|
10 |
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
# **
|
17 |
-
def
|
18 |
-
if not list_file_path:
|
19 |
-
return [], "Fehler: Keine Dokumente gefunden!"
|
20 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
21 |
-
|
22 |
for loader in loaders:
|
23 |
-
|
24 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
25 |
-
return text_splitter.split_documents(
|
26 |
-
|
27 |
-
# **Vektor-Datenbank
|
28 |
-
def create_db(
|
29 |
-
embeddings = HuggingFaceEmbeddings(
|
30 |
-
return FAISS.from_documents(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
# **Datenbank initialisieren**
|
33 |
def initialize_database(list_file_obj):
|
34 |
-
if not list_file_obj or all(x is None for x in list_file_obj):
|
35 |
-
return None, "Fehler: Keine Dateien hochgeladen!"
|
36 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
37 |
-
doc_splits =
|
38 |
vector_db = create_db(doc_splits)
|
39 |
-
print("Vektordatenbank erfolgreich erstellt!")
|
40 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
41 |
|
42 |
-
# **
|
43 |
-
def
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
try:
|
49 |
-
print("Initialisiere QA-Chatbot...")
|
50 |
-
qa_chain = initialize_llm_chain(temperature, max_tokens, vector_db)
|
51 |
-
print("QA-Chatbot erfolgreich initialisiert!")
|
52 |
-
return qa_chain, "QA-Chatbot ist bereit!"
|
53 |
-
except Exception as e:
|
54 |
-
print(f"Fehler bei der Initialisierung: {str(e)}")
|
55 |
-
return None, f"Fehler bei der Initialisierung: {str(e)}"
|
56 |
-
|
57 |
-
# **LLM-Kette erstellen**
|
58 |
-
def initialize_llm_chain(temperature, max_tokens, vector_db):
|
59 |
-
print("Lade Modellpipeline...")
|
60 |
-
local_pipeline = pipeline(
|
61 |
-
"text2text-generation",
|
62 |
-
model=LLM_MODEL_NAME,
|
63 |
-
max_length=max_tokens,
|
64 |
-
temperature=temperature
|
65 |
-
)
|
66 |
-
print(f"Modell {LLM_MODEL_NAME} erfolgreich geladen.")
|
67 |
-
llm = HuggingFacePipeline(pipeline=local_pipeline)
|
68 |
-
memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer") # Speichere nur die Antwort
|
69 |
-
retriever = vector_db.as_retriever()
|
70 |
-
return ConversationalRetrievalChain.from_llm(
|
71 |
-
llm,
|
72 |
-
retriever=retriever,
|
73 |
-
memory=memory,
|
74 |
-
return_source_documents=True
|
75 |
-
)
|
76 |
-
|
77 |
-
# **Konversation mit QA-Kette führen**
|
78 |
-
def truncate_history(history, max_length=MAX_INPUT_LENGTH):
|
79 |
-
total_length = 0
|
80 |
-
truncated_history = []
|
81 |
-
|
82 |
-
for message in reversed(history):
|
83 |
-
total_length += len(message[0]) + len(message[1])
|
84 |
-
if total_length > max_length:
|
85 |
-
break
|
86 |
-
truncated_history.insert(0, message)
|
87 |
-
|
88 |
-
return truncated_history
|
89 |
|
|
|
90 |
def conversation(qa_chain, message, history):
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
return qa_chain, [{"role": "system", "content": "Bitte eine Frage eingeben!"}], history
|
95 |
-
try:
|
96 |
-
print(f"Frage: {message}")
|
97 |
-
history = truncate_history(history) # Beschränke den Verlauf auf unter 512 Tokens
|
98 |
-
response = qa_chain.invoke({"question": message, "chat_history": history})
|
99 |
-
response_text = response["answer"]
|
100 |
-
sources = [doc.metadata["source"] for doc in response["source_documents"]]
|
101 |
-
sources_text = "\n".join(sources) if sources else "Keine Quellen verfügbar"
|
102 |
-
|
103 |
-
# Strukturierte Rückgabe an `gr.Chatbot`
|
104 |
-
formatted_response = history + [
|
105 |
-
{"role": "user", "content": message},
|
106 |
-
{"role": "assistant", "content": f"{response_text}\n\n**Quellen:**\n{sources_text}"}
|
107 |
-
]
|
108 |
-
print("Antwort erfolgreich generiert.")
|
109 |
-
return qa_chain, formatted_response, formatted_response
|
110 |
-
except Exception as e:
|
111 |
-
print(f"Fehler während der Konversation: {str(e)}")
|
112 |
-
return qa_chain, [{"role": "system", "content": f"Fehler: {str(e)}"}], history
|
113 |
|
114 |
-
# **
|
115 |
def demo():
|
116 |
with gr.Blocks() as demo:
|
117 |
-
vector_db = gr.State()
|
118 |
-
qa_chain = gr.State()
|
119 |
-
|
120 |
-
|
121 |
-
gr.
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
qachain_btn.click(initialize_llm_chain_wrapper, [slider_temperature, slider_max_tokens, vector_db], [qa_chain, db_status])
|
138 |
-
submit_btn.click(conversation, [qa_chain, msg, chat_history], [qa_chain, chatbot, chat_history])
|
139 |
-
|
140 |
-
demo.launch(debug=True)
|
141 |
|
142 |
if __name__ == "__main__":
|
143 |
demo()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
8 |
from langchain.chains import ConversationalRetrievalChain
|
9 |
from langchain.memory import ConversationBufferMemory
|
|
|
10 |
|
11 |
+
# Der Token wird sicher aus den Space Secrets abgerufen
|
12 |
+
api_token = os.getenv("HF_TOKEN") # Kein direkter API-Token im Code sichtbar
|
13 |
|
14 |
+
# Kostenlose LLM-Optionen (Free-Version)
|
15 |
+
list_llm = ["google/flan-t5-small", "google/flan-t5-base"]
|
16 |
|
17 |
+
# **Dokument laden und aufteilen**
|
18 |
+
def load_doc(list_file_path):
|
|
|
|
|
19 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
20 |
+
pages = []
|
21 |
for loader in loaders:
|
22 |
+
pages.extend(loader.load())
|
23 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1024, chunk_overlap=64)
|
24 |
+
return text_splitter.split_documents(pages)
|
25 |
+
|
26 |
+
# **Vektor-Datenbank erstellen**
|
27 |
+
def create_db(splits):
|
28 |
+
embeddings = HuggingFaceEmbeddings()
|
29 |
+
return FAISS.from_documents(splits, embeddings)
|
30 |
+
|
31 |
+
# **LLM-Kette initialisieren**
|
32 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
33 |
+
llm = HuggingFaceEndpoint(
|
34 |
+
repo_id=llm_model,
|
35 |
+
huggingfacehub_api_token=api_token, # Holt den API-Token aus den Space Secrets
|
36 |
+
temperature=temperature,
|
37 |
+
max_new_tokens=max_tokens,
|
38 |
+
top_k=top_k,
|
39 |
+
)
|
40 |
+
memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
|
41 |
+
retriever = vector_db.as_retriever()
|
42 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
43 |
+
llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True
|
44 |
+
)
|
45 |
+
return qa_chain
|
46 |
|
47 |
# **Datenbank initialisieren**
|
48 |
def initialize_database(list_file_obj):
|
|
|
|
|
49 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
50 |
+
doc_splits = load_doc(list_file_path)
|
51 |
vector_db = create_db(doc_splits)
|
|
|
52 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
53 |
|
54 |
+
# **LLM initialisieren**
|
55 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
56 |
+
llm_name = list_llm[llm_option]
|
57 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
|
58 |
+
return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
# **Konversation**
|
61 |
def conversation(qa_chain, message, history):
|
62 |
+
response = qa_chain.invoke({"question": message, "chat_history": history})
|
63 |
+
response_answer = response["answer"]
|
64 |
+
return qa_chain, response_answer, history + [(message, response_answer)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# **Demo erstellen**
|
67 |
def demo():
|
68 |
with gr.Blocks() as demo:
|
69 |
+
vector_db = gr.State()
|
70 |
+
qa_chain = gr.State()
|
71 |
+
|
72 |
+
gr.Markdown("<center><h1>PDF-Chatbot mit kostenfreien Hugging Face-Modellen</h1></center>")
|
73 |
+
document = gr.Files(label="Lade PDF-Dokumente hoch", file_types=[".pdf"])
|
74 |
+
db_btn = gr.Button("Erstelle Vektordatenbank")
|
75 |
+
llm_btn = gr.Radio(["Flan-T5 Small", "Flan-T5 Base"], label="Verfügbare LLMs", value="Flan-T5 Small", type="index")
|
76 |
+
slider_temperature = gr.Slider(0.01, 1.0, 0.5, label="Temperature")
|
77 |
+
slider_maxtokens = gr.Slider(128, 2048, 512, label="Max Tokens")
|
78 |
+
slider_topk = gr.Slider(1, 10, 3, label="Top-k")
|
79 |
+
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
80 |
+
chatbot = gr.Chatbot(label="Chatbot", height=400)
|
81 |
+
msg = gr.Textbox(label="Frage stellen")
|
82 |
+
submit_btn = gr.Button("Absenden")
|
83 |
+
|
84 |
+
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db])
|
85 |
+
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain])
|
86 |
+
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, chatbot, chatbot])
|
87 |
+
|
88 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
demo()
|