Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,100 +1,74 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
api_token = os.getenv("HF_TOKEN")
|
4 |
-
|
5 |
-
|
6 |
from langchain_community.vectorstores import FAISS
|
7 |
from langchain_community.document_loaders import PyPDFLoader
|
8 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
-
from langchain_community.vectorstores import Chroma
|
10 |
-
from langchain.chains import ConversationalRetrievalChain
|
11 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
12 |
-
from
|
13 |
-
from langchain.chains import ConversationChain
|
14 |
-
from langchain.memory import ConversationBufferMemory
|
15 |
from langchain_community.llms import HuggingFaceEndpoint
|
16 |
-
import
|
17 |
|
18 |
-
|
|
|
19 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
20 |
|
21 |
-
#
|
22 |
def load_doc(list_file_path):
|
23 |
-
# Processing for one document only
|
24 |
-
# loader = PyPDFLoader(file_path)
|
25 |
-
# pages = loader.load()
|
26 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
27 |
pages = []
|
28 |
for loader in loaders:
|
29 |
pages.extend(loader.load())
|
30 |
text_splitter = RecursiveCharacterTextSplitter(
|
31 |
-
chunk_size
|
32 |
-
chunk_overlap
|
33 |
-
)
|
34 |
doc_splits = text_splitter.split_documents(pages)
|
35 |
return doc_splits
|
36 |
|
37 |
-
#
|
38 |
def create_db(splits):
|
39 |
embeddings = HuggingFaceEmbeddings()
|
40 |
vectordb = FAISS.from_documents(splits, embeddings)
|
41 |
return vectordb
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
# Initialize langchain LLM chain
|
45 |
-
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
46 |
-
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
|
47 |
-
llm = HuggingFaceEndpoint(
|
48 |
-
repo_id=llm_model,
|
49 |
-
huggingfacehub_api_token = api_token,
|
50 |
-
temperature = temperature,
|
51 |
-
max_new_tokens = max_tokens,
|
52 |
-
top_k = top_k,
|
53 |
-
)
|
54 |
-
else:
|
55 |
-
llm = HuggingFaceEndpoint(
|
56 |
-
huggingfacehub_api_token = api_token,
|
57 |
-
repo_id=llm_model,
|
58 |
-
temperature = temperature,
|
59 |
-
max_new_tokens = max_tokens,
|
60 |
-
top_k = top_k,
|
61 |
-
)
|
62 |
-
|
63 |
memory = ConversationBufferMemory(
|
64 |
memory_key="chat_history",
|
65 |
output_key='answer',
|
66 |
return_messages=True
|
67 |
)
|
68 |
|
69 |
-
retriever=vector_db.as_retriever()
|
70 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
71 |
llm,
|
72 |
retriever=retriever,
|
73 |
-
chain_type="stuff",
|
74 |
memory=memory,
|
75 |
return_source_documents=True,
|
76 |
-
verbose=False
|
77 |
)
|
78 |
return qa_chain
|
79 |
|
80 |
-
#
|
81 |
-
def initialize_database(list_file_obj
|
82 |
-
# Create a list of documents (when valid)
|
83 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
84 |
-
# Load document and create splits
|
85 |
doc_splits = load_doc(list_file_path)
|
86 |
-
# Create or load vector database
|
87 |
vector_db = create_db(doc_splits)
|
88 |
-
return vector_db, "
|
89 |
|
90 |
-
#
|
91 |
-
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db
|
92 |
-
# print("llm_option",llm_option)
|
93 |
llm_name = list_llm[llm_option]
|
94 |
-
|
95 |
-
qa_chain
|
96 |
-
return qa_chain, "QA chain initialized. Chatbot is ready!"
|
97 |
-
|
98 |
|
99 |
def format_chat_history(message, chat_history):
|
100 |
formatted_chat_history = []
|
@@ -102,115 +76,48 @@ def format_chat_history(message, chat_history):
|
|
102 |
formatted_chat_history.append(f"User: {user_message}")
|
103 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
104 |
return formatted_chat_history
|
105 |
-
|
106 |
|
|
|
107 |
def conversation(qa_chain, message, history):
|
108 |
formatted_chat_history = format_chat_history(message, history)
|
109 |
-
# Generate response using QA chain
|
110 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
111 |
response_answer = response["answer"]
|
112 |
-
if
|
113 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
114 |
-
response_sources = response["source_documents"]
|
115 |
-
response_source1 = response_sources[0].page_content.strip()
|
116 |
-
response_source2 = response_sources[1].page_content.strip()
|
117 |
-
response_source3 = response_sources[2].page_content.strip()
|
118 |
-
# Langchain sources are zero-based
|
119 |
-
response_source1_page = response_sources[0].metadata["page"] + 1
|
120 |
-
response_source2_page = response_sources[1].metadata["page"] + 1
|
121 |
-
response_source3_page = response_sources[2].metadata["page"] + 1
|
122 |
-
# Append user message and response to chat history
|
123 |
new_history = history + [(message, response_answer)]
|
124 |
-
return qa_chain, gr.update(value=""), new_history
|
125 |
-
|
126 |
-
|
127 |
-
def upload_file(file_obj):
|
128 |
-
list_file_path = []
|
129 |
-
for idx, file in enumerate(file_obj):
|
130 |
-
file_path = file_obj.name
|
131 |
-
list_file_path.append(file_path)
|
132 |
-
return list_file_path
|
133 |
-
|
134 |
|
|
|
135 |
def demo():
|
136 |
-
|
137 |
-
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
|
138 |
vector_db = gr.State()
|
139 |
qa_chain = gr.State()
|
140 |
-
gr.HTML("<center><h1>RAG PDF
|
141 |
-
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
|
142 |
-
<b>Please do not upload confidential documents.</b>
|
143 |
-
""")
|
144 |
with gr.Row():
|
145 |
-
with gr.Column(
|
146 |
-
gr.Markdown("
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
gr.
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
with gr.Column(scale = 200):
|
170 |
-
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
|
171 |
-
chatbot = gr.Chatbot(height=505)
|
172 |
-
with gr.Accordion("Relevent context from the source document", open=False):
|
173 |
-
with gr.Row():
|
174 |
-
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
175 |
-
source1_page = gr.Number(label="Page", scale=1)
|
176 |
-
with gr.Row():
|
177 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
178 |
-
source2_page = gr.Number(label="Page", scale=1)
|
179 |
-
with gr.Row():
|
180 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
181 |
-
source3_page = gr.Number(label="Page", scale=1)
|
182 |
-
with gr.Row():
|
183 |
-
msg = gr.Textbox(placeholder="Ask a question", container=True)
|
184 |
-
with gr.Row():
|
185 |
-
submit_btn = gr.Button("Submit")
|
186 |
-
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
|
187 |
-
|
188 |
-
# Preprocessing events
|
189 |
-
db_btn.click(initialize_database, \
|
190 |
-
inputs=[document], \
|
191 |
-
outputs=[vector_db, db_progress])
|
192 |
-
qachain_btn.click(initialize_LLM, \
|
193 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
194 |
-
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
195 |
-
inputs=None, \
|
196 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
197 |
-
queue=False)
|
198 |
-
|
199 |
-
# Chatbot events
|
200 |
-
msg.submit(conversation, \
|
201 |
-
inputs=[qa_chain, msg, chatbot], \
|
202 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
203 |
-
queue=False)
|
204 |
-
submit_btn.click(conversation, \
|
205 |
-
inputs=[qa_chain, msg, chatbot], \
|
206 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
207 |
-
queue=False)
|
208 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
209 |
-
inputs=None, \
|
210 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
211 |
-
queue=False)
|
212 |
-
demo.queue().launch(debug=True)
|
213 |
-
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
-
demo()
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
|
|
3 |
from langchain_community.vectorstores import FAISS
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
6 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
8 |
from langchain_community.llms import HuggingFaceEndpoint
|
9 |
+
from langchain.memory import ConversationBufferMemory
|
10 |
|
11 |
+
# Liste der Modelle
|
12 |
+
list_llm = ["google/flan-t5-small", "distilbert-base-uncased"] # Leichtere, CPU-freundliche Modelle
|
13 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
14 |
|
15 |
+
# PDF-Dokument laden und aufteilen
|
16 |
def load_doc(list_file_path):
|
|
|
|
|
|
|
17 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
18 |
pages = []
|
19 |
for loader in loaders:
|
20 |
pages.extend(loader.load())
|
21 |
text_splitter = RecursiveCharacterTextSplitter(
|
22 |
+
chunk_size=512, # Kleinere Chunks für schnellere Verarbeitung
|
23 |
+
chunk_overlap=32
|
24 |
+
)
|
25 |
doc_splits = text_splitter.split_documents(pages)
|
26 |
return doc_splits
|
27 |
|
28 |
+
# Erstellen der Vektordatenbank
|
29 |
def create_db(splits):
|
30 |
embeddings = HuggingFaceEmbeddings()
|
31 |
vectordb = FAISS.from_documents(splits, embeddings)
|
32 |
return vectordb
|
33 |
|
34 |
+
# Initialisierung des LLM Chains
|
35 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db):
|
36 |
+
llm = HuggingFaceEndpoint(
|
37 |
+
repo_id=llm_model,
|
38 |
+
temperature=temperature,
|
39 |
+
max_new_tokens=max_tokens,
|
40 |
+
top_k=top_k
|
41 |
+
)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
memory = ConversationBufferMemory(
|
44 |
memory_key="chat_history",
|
45 |
output_key='answer',
|
46 |
return_messages=True
|
47 |
)
|
48 |
|
49 |
+
retriever = vector_db.as_retriever()
|
50 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
51 |
llm,
|
52 |
retriever=retriever,
|
53 |
+
chain_type="stuff",
|
54 |
memory=memory,
|
55 |
return_source_documents=True,
|
56 |
+
verbose=False
|
57 |
)
|
58 |
return qa_chain
|
59 |
|
60 |
+
# Initialisierung der Datenbank
|
61 |
+
def initialize_database(list_file_obj):
|
|
|
62 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
63 |
doc_splits = load_doc(list_file_path)
|
|
|
64 |
vector_db = create_db(doc_splits)
|
65 |
+
return vector_db, "Datenbank erfolgreich erstellt!"
|
66 |
|
67 |
+
# Initialisierung des LLMs
|
68 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db):
|
|
|
69 |
llm_name = list_llm[llm_option]
|
70 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db)
|
71 |
+
return qa_chain, "LLM erfolgreich initialisiert! Chatbot ist bereit."
|
|
|
|
|
72 |
|
73 |
def format_chat_history(message, chat_history):
|
74 |
formatted_chat_history = []
|
|
|
76 |
formatted_chat_history.append(f"User: {user_message}")
|
77 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
78 |
return formatted_chat_history
|
|
|
79 |
|
80 |
+
# Chat-Funktion
|
81 |
def conversation(qa_chain, message, history):
|
82 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
83 |
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
84 |
response_answer = response["answer"]
|
85 |
+
if "Helpful Answer:" in response_answer:
|
86 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
new_history = history + [(message, response_answer)]
|
88 |
+
return qa_chain, gr.update(value=""), new_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
# Gradio App erstellen
|
91 |
def demo():
|
92 |
+
with gr.Blocks() as demo:
|
|
|
93 |
vector_db = gr.State()
|
94 |
qa_chain = gr.State()
|
95 |
+
gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
|
|
|
|
|
|
|
96 |
with gr.Row():
|
97 |
+
with gr.Column():
|
98 |
+
gr.Markdown("### Schritt 1: Lade PDF-Dokument hoch")
|
99 |
+
document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True)
|
100 |
+
db_btn = gr.Button("Erstelle Vektordatenbank")
|
101 |
+
db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
|
102 |
+
gr.Markdown("### Schritt 2: Wähle LLM und Einstellungen")
|
103 |
+
llm_btn = gr.Radio(list_llm_simple, label="Verfügbare Modelle", value=list_llm_simple[0], type="index")
|
104 |
+
slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Temperature")
|
105 |
+
slider_maxtokens = gr.Slider(64, 512, value=256, step=64, label="Max Tokens")
|
106 |
+
slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-k")
|
107 |
+
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
108 |
+
llm_progress = gr.Textbox(value="Nicht initialisiert", show_label=False)
|
109 |
+
|
110 |
+
with gr.Column():
|
111 |
+
gr.Markdown("### Schritt 3: Stelle Fragen an dein Dokument")
|
112 |
+
chatbot = gr.Chatbot(height=400, type="messages")
|
113 |
+
msg = gr.Textbox(placeholder="Frage stellen...")
|
114 |
+
submit_btn = gr.Button("Absenden")
|
115 |
+
|
116 |
+
db_btn.click(initialize_database, [document], [vector_db, db_progress])
|
117 |
+
qachain_btn.click(initialize_LLM, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress])
|
118 |
+
msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
|
119 |
+
submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot])
|
120 |
+
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
+
demo()
|