Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -26,6 +26,14 @@ def create_db(docs):
|
|
26 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
27 |
return FAISS.from_documents(docs, embeddings)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
|
30 |
local_pipeline = pipeline(
|
31 |
"text2text-generation",
|
@@ -43,6 +51,18 @@ def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
|
|
43 |
return_source_documents=True
|
44 |
)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def demo():
|
47 |
with gr.Blocks() as demo:
|
48 |
vector_db = gr.State()
|
@@ -64,7 +84,7 @@ def demo():
|
|
64 |
submit_btn = gr.Button("Absenden")
|
65 |
|
66 |
db_btn.click(initialize_database, [document], [vector_db, db_status])
|
67 |
-
qachain_btn.click(
|
68 |
submit_btn.click(conversation, [qa_chain, msg, []], [qa_chain, "message", "history"])
|
69 |
|
70 |
demo.launch(debug=True, enable_queue=True)
|
|
|
26 |
embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
|
27 |
return FAISS.from_documents(docs, embeddings)
|
28 |
|
29 |
+
def initialize_database(list_file_obj):
|
30 |
+
if not list_file_obj or all(x is None for x in list_file_obj):
|
31 |
+
return None, "Fehler: Keine Dateien hochgeladen!"
|
32 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
33 |
+
doc_splits = load_and_split_docs(list_file_path)
|
34 |
+
vector_db = create_db(doc_splits)
|
35 |
+
return vector_db, "Datenbank erfolgreich erstellt!"
|
36 |
+
|
37 |
def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
|
38 |
local_pipeline = pipeline(
|
39 |
"text2text-generation",
|
|
|
51 |
return_source_documents=True
|
52 |
)
|
53 |
|
54 |
+
def conversation(qa_chain, message, history):
|
55 |
+
if qa_chain is None:
|
56 |
+
return None, "Der QA-Chain wurde nicht initialisiert!", history
|
57 |
+
try:
|
58 |
+
response = qa_chain({"question": message, "chat_history": history})
|
59 |
+
response_text = response["answer"]
|
60 |
+
sources = [doc.metadata["source"] for doc in response["source_documents"]]
|
61 |
+
sources_text = "\n".join(sources)
|
62 |
+
return qa_chain, f"{response_text}\n\n**Quellen:**\n{sources_text}", history + [(message, response_text)]
|
63 |
+
except Exception as e:
|
64 |
+
return qa_chain, f"Fehler: {str(e)}", history
|
65 |
+
|
66 |
def demo():
|
67 |
with gr.Blocks() as demo:
|
68 |
vector_db = gr.State()
|
|
|
84 |
submit_btn = gr.Button("Absenden")
|
85 |
|
86 |
db_btn.click(initialize_database, [document], [vector_db, db_status])
|
87 |
+
qachain_btn.click(initialize_llm_chain, [LLM_MODEL_NAME, slider_temperature, slider_max_tokens, vector_db], [qa_chain])
|
88 |
submit_btn.click(conversation, [qa_chain, msg, []], [qa_chain, "message", "history"])
|
89 |
|
90 |
demo.launch(debug=True, enable_queue=True)
|