la04 commited on
Commit
8ca77ad
·
verified ·
1 Parent(s): d82bfa1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -1
app.py CHANGED
@@ -26,6 +26,14 @@ def create_db(docs):
26
  embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
27
  return FAISS.from_documents(docs, embeddings)
28
 
 
 
 
 
 
 
 
 
29
  def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
30
  local_pipeline = pipeline(
31
  "text2text-generation",
@@ -43,6 +51,18 @@ def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
43
  return_source_documents=True
44
  )
45
 
 
 
 
 
 
 
 
 
 
 
 
 
46
  def demo():
47
  with gr.Blocks() as demo:
48
  vector_db = gr.State()
@@ -64,7 +84,7 @@ def demo():
64
  submit_btn = gr.Button("Absenden")
65
 
66
  db_btn.click(initialize_database, [document], [vector_db, db_status])
67
- qachain_btn.click(initialize_llm_chain_wrapper, [slider_temperature, slider_max_tokens, vector_db], [qa_chain])
68
  submit_btn.click(conversation, [qa_chain, msg, []], [qa_chain, "message", "history"])
69
 
70
  demo.launch(debug=True, enable_queue=True)
 
26
  embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME)
27
  return FAISS.from_documents(docs, embeddings)
28
 
29
+ def initialize_database(list_file_obj):
30
+ if not list_file_obj or all(x is None for x in list_file_obj):
31
+ return None, "Fehler: Keine Dateien hochgeladen!"
32
+ list_file_path = [x.name for x in list_file_obj if x is not None]
33
+ doc_splits = load_and_split_docs(list_file_path)
34
+ vector_db = create_db(doc_splits)
35
+ return vector_db, "Datenbank erfolgreich erstellt!"
36
+
37
  def initialize_llm_chain(llm_model, temperature, max_tokens, vector_db):
38
  local_pipeline = pipeline(
39
  "text2text-generation",
 
51
  return_source_documents=True
52
  )
53
 
54
+ def conversation(qa_chain, message, history):
55
+ if qa_chain is None:
56
+ return None, "Der QA-Chain wurde nicht initialisiert!", history
57
+ try:
58
+ response = qa_chain({"question": message, "chat_history": history})
59
+ response_text = response["answer"]
60
+ sources = [doc.metadata["source"] for doc in response["source_documents"]]
61
+ sources_text = "\n".join(sources)
62
+ return qa_chain, f"{response_text}\n\n**Quellen:**\n{sources_text}", history + [(message, response_text)]
63
+ except Exception as e:
64
+ return qa_chain, f"Fehler: {str(e)}", history
65
+
66
  def demo():
67
  with gr.Blocks() as demo:
68
  vector_db = gr.State()
 
84
  submit_btn = gr.Button("Absenden")
85
 
86
  db_btn.click(initialize_database, [document], [vector_db, db_status])
87
+ qachain_btn.click(initialize_llm_chain, [LLM_MODEL_NAME, slider_temperature, slider_max_tokens, vector_db], [qa_chain])
88
  submit_btn.click(conversation, [qa_chain, msg, []], [qa_chain, "message", "history"])
89
 
90
  demo.launch(debug=True, enable_queue=True)