Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,13 +7,19 @@ from langchain_community.vectorstores import FAISS
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
|
10 |
-
#
|
11 |
-
api_token = os.getenv("HF_TOKEN")
|
12 |
|
13 |
-
#
|
14 |
-
list_llm = [
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
def load_doc(list_file_path):
|
18 |
if not list_file_path:
|
19 |
return [], "Fehler: Keine Dokumente gefunden!"
|
@@ -21,15 +27,15 @@ def load_doc(list_file_path):
|
|
21 |
documents = []
|
22 |
for loader in loaders:
|
23 |
documents.extend(loader.load())
|
24 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=
|
25 |
return text_splitter.split_documents(documents)
|
26 |
|
27 |
-
#
|
28 |
def create_db(splits):
|
29 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
30 |
return FAISS.from_documents(splits, embeddings)
|
31 |
|
32 |
-
# Datenbank
|
33 |
def initialize_database(list_file_obj):
|
34 |
if not list_file_obj:
|
35 |
return None, "Fehler: Keine Dateien hochgeladen!"
|
@@ -38,31 +44,36 @@ def initialize_database(list_file_obj):
|
|
38 |
vector_db = create_db(doc_splits)
|
39 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
40 |
|
41 |
-
# LLM-Kette
|
42 |
-
def initialize_llmchain(llm_model, temperature, max_tokens,
|
43 |
if vector_db is None:
|
44 |
return None, "Fehler: Keine Vektordatenbank verfügbar."
|
45 |
-
if
|
46 |
-
max_tokens =
|
|
|
|
|
|
|
47 |
llm = HuggingFaceEndpoint(
|
48 |
repo_id=llm_model,
|
49 |
huggingfacehub_api_token=api_token,
|
50 |
temperature=temperature,
|
51 |
-
max_new_tokens=max_tokens
|
52 |
-
top_k=top_k,
|
53 |
)
|
54 |
memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
|
55 |
retriever = vector_db.as_retriever()
|
56 |
-
|
|
|
57 |
llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True
|
58 |
)
|
59 |
|
60 |
-
|
61 |
-
|
|
|
|
|
62 |
if vector_db is None:
|
63 |
return None, "Fehler: Datenbank wurde nicht erstellt!"
|
64 |
llm_name = list_llm[llm_option]
|
65 |
-
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens,
|
66 |
return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
|
67 |
|
68 |
# Konversation
|
@@ -76,23 +87,27 @@ def conversation(qa_chain, message, history):
|
|
76 |
formatted_response = history + [{"role": "user", "content": message}, {"role": "assistant", "content": response_text}]
|
77 |
return qa_chain, formatted_response, formatted_response
|
78 |
|
79 |
-
#
|
80 |
def demo():
|
81 |
with gr.Blocks() as demo:
|
82 |
vector_db = gr.State()
|
83 |
qa_chain = gr.State()
|
84 |
-
gr.Markdown("<center><h1>
|
85 |
|
86 |
with gr.Row():
|
87 |
with gr.Column():
|
88 |
-
document = gr.Files(label="PDF-Dokument hochladen")
|
89 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
90 |
db_status = gr.Textbox(label="Datenbankstatus", value="Nicht erstellt", interactive=False)
|
91 |
|
92 |
-
llm_btn = gr.Radio(
|
|
|
|
|
|
|
|
|
|
|
93 |
slider_temperature = gr.Slider(0.01, 1.0, 0.5, label="Temperature")
|
94 |
-
slider_maxtokens = gr.Slider(1,
|
95 |
-
slider_topk = gr.Slider(1, 10, 3, label="Top-k")
|
96 |
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
97 |
llm_status = gr.Textbox(label="Chatbot-Status", value="Nicht initialisiert", interactive=False)
|
98 |
|
@@ -101,24 +116,12 @@ def demo():
|
|
101 |
msg = gr.Textbox(label="Frage stellen")
|
102 |
submit_btn = gr.Button("Absenden")
|
103 |
|
104 |
-
#
|
105 |
-
db_btn.click(
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
qachain_btn.click(
|
111 |
-
initialize_LLM,
|
112 |
-
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
113 |
-
outputs=[qa_chain, llm_status]
|
114 |
-
)
|
115 |
-
submit_btn.click(
|
116 |
-
conversation,
|
117 |
-
inputs=[qa_chain, msg, chatbot],
|
118 |
-
outputs=[qa_chain, chatbot, chatbot]
|
119 |
-
)
|
120 |
-
|
121 |
-
demo.launch(debug=True)
|
122 |
|
123 |
if __name__ == "__main__":
|
124 |
demo()
|
|
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
from langchain.memory import ConversationBufferMemory
|
9 |
|
10 |
+
# Dein Hugging Face Read Token
|
11 |
+
api_token = os.getenv("HF_TOKEN", "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")
|
12 |
|
13 |
+
# Modelle für Auswahl
|
14 |
+
list_llm = [
|
15 |
+
"google/flan-t5-base", # Leichtes Instruktionsmodell
|
16 |
+
"sentence-transformers/all-MiniLM-L6-v2", # Embeddings-optimiertes Modell
|
17 |
+
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", # Pythia 12B
|
18 |
+
"bigscience/bloom-3b", # Multilingualer BLOOM
|
19 |
+
"bigscience/bloom-1b7" # Leichtes BLOOM-Modell
|
20 |
+
]
|
21 |
|
22 |
+
# Dokumentenverarbeitung
|
23 |
def load_doc(list_file_path):
|
24 |
if not list_file_path:
|
25 |
return [], "Fehler: Keine Dokumente gefunden!"
|
|
|
27 |
documents = []
|
28 |
for loader in loaders:
|
29 |
documents.extend(loader.load())
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32)
|
31 |
return text_splitter.split_documents(documents)
|
32 |
|
33 |
+
# Erstelle Vektordatenbank
|
34 |
def create_db(splits):
|
35 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
36 |
return FAISS.from_documents(splits, embeddings)
|
37 |
|
38 |
+
# Initialisiere Datenbank
|
39 |
def initialize_database(list_file_obj):
|
40 |
if not list_file_obj:
|
41 |
return None, "Fehler: Keine Dateien hochgeladen!"
|
|
|
44 |
vector_db = create_db(doc_splits)
|
45 |
return vector_db, "Datenbank erfolgreich erstellt!"
|
46 |
|
47 |
+
# Initialisiere LLM-Kette
|
48 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, vector_db):
|
49 |
if vector_db is None:
|
50 |
return None, "Fehler: Keine Vektordatenbank verfügbar."
|
51 |
+
if "pythia" in llm_model or "bloom" in llm_model:
|
52 |
+
max_tokens = min(max_tokens, 2048)
|
53 |
+
else:
|
54 |
+
max_tokens = min(max_tokens, 1024)
|
55 |
+
|
56 |
llm = HuggingFaceEndpoint(
|
57 |
repo_id=llm_model,
|
58 |
huggingfacehub_api_token=api_token,
|
59 |
temperature=temperature,
|
60 |
+
max_new_tokens=max_tokens
|
|
|
61 |
)
|
62 |
memory = ConversationBufferMemory(memory_key="chat_history", output_key="answer", return_messages=True)
|
63 |
retriever = vector_db.as_retriever()
|
64 |
+
|
65 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
66 |
llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True
|
67 |
)
|
68 |
|
69 |
+
return qa_chain
|
70 |
+
|
71 |
+
# Initialisiere LLM
|
72 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, vector_db):
|
73 |
if vector_db is None:
|
74 |
return None, "Fehler: Datenbank wurde nicht erstellt!"
|
75 |
llm_name = list_llm[llm_option]
|
76 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, vector_db)
|
77 |
return qa_chain, "QA-Kette initialisiert. Chatbot ist bereit!"
|
78 |
|
79 |
# Konversation
|
|
|
87 |
formatted_response = history + [{"role": "user", "content": message}, {"role": "assistant", "content": response_text}]
|
88 |
return qa_chain, formatted_response, formatted_response
|
89 |
|
90 |
+
# Gradio UI
|
91 |
def demo():
|
92 |
with gr.Blocks() as demo:
|
93 |
vector_db = gr.State()
|
94 |
qa_chain = gr.State()
|
95 |
+
gr.Markdown("<center><h1>RAG-Chatbot mit Pythia und BLOOM (CPU-kompatibel)</h1></center>")
|
96 |
|
97 |
with gr.Row():
|
98 |
with gr.Column():
|
99 |
+
document = gr.Files(label="PDF-Dokument hochladen", type="file", file_types=[".pdf"], file_count="multiple")
|
100 |
db_btn = gr.Button("Erstelle Vektordatenbank")
|
101 |
db_status = gr.Textbox(label="Datenbankstatus", value="Nicht erstellt", interactive=False)
|
102 |
|
103 |
+
llm_btn = gr.Radio(
|
104 |
+
["Flan-T5 Base", "MiniLM", "Pythia 12B", "BLOOM 3B", "BLOOM 1.7B"],
|
105 |
+
label="Verfügbare LLMs",
|
106 |
+
value="Flan-T5 Base",
|
107 |
+
type="index"
|
108 |
+
)
|
109 |
slider_temperature = gr.Slider(0.01, 1.0, 0.5, label="Temperature")
|
110 |
+
slider_maxtokens = gr.Slider(1, 2048, 512, label="Max Tokens")
|
|
|
111 |
qachain_btn = gr.Button("Initialisiere QA-Chatbot")
|
112 |
llm_status = gr.Textbox(label="Chatbot-Status", value="Nicht initialisiert", interactive=False)
|
113 |
|
|
|
116 |
msg = gr.Textbox(label="Frage stellen")
|
117 |
submit_btn = gr.Button("Absenden")
|
118 |
|
119 |
+
# Events verknüpfen
|
120 |
+
db_btn.click(initialize_database, inputs=[document], outputs=[vector_db, db_status])
|
121 |
+
qachain_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, vector_db], outputs=[qa_chain, llm_status])
|
122 |
+
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, chatbot, chatbot])
|
123 |
+
|
124 |
+
demo.launch(debug=True, share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
if __name__ == "__main__":
|
127 |
demo()
|