Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,15 @@
|
|
1 |
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
from PyPDF2 import PdfReader
|
|
|
4 |
|
5 |
-
# Modell und Tokenizer
|
6 |
-
model_name = "deepset/roberta-base-squad2"
|
7 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
|
10 |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
-
# Funktion zum Extrahieren von Text aus
|
13 |
def extract_text_from_pdf(pdf_path):
|
14 |
reader = PdfReader(pdf_path)
|
15 |
text = ""
|
@@ -17,12 +17,15 @@ def extract_text_from_pdf(pdf_path):
|
|
17 |
text += page.extract_text()
|
18 |
return text
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
def split_text_into_paragraphs(text, max_length=500):
|
22 |
-
paragraphs = text.split("\n")
|
23 |
refined_paragraphs = []
|
24 |
temp = ""
|
25 |
-
|
26 |
for para in paragraphs:
|
27 |
if len(temp) + len(para) <= max_length:
|
28 |
temp += " " + para
|
@@ -31,54 +34,51 @@ def split_text_into_paragraphs(text, max_length=500):
|
|
31 |
temp = para
|
32 |
if temp:
|
33 |
refined_paragraphs.append(temp.strip())
|
34 |
-
|
35 |
return refined_paragraphs
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
return "Die Antwort konnte nicht eindeutig aus dem Dokument ermittelt werden."
|
41 |
-
|
|
|
|
|
42 |
return answer.capitalize().strip()
|
43 |
|
44 |
-
# Funktion für die Fragebeantwortung
|
45 |
def chatbot_response(pdf_path, question):
|
46 |
-
# PDF-Text extrahieren
|
47 |
context = extract_text_from_pdf(pdf_path)
|
48 |
-
|
49 |
-
# Text vorverarbeiten: Aufteilen in Absätze
|
50 |
context_parts = split_text_into_paragraphs(context)
|
|
|
51 |
|
52 |
-
# Relevante Abschnitte finden (Keyword-Suche)
|
53 |
-
relevant_parts = [part for part in context_parts if any(word.lower() in part.lower() for word in question.split())]
|
54 |
-
if not relevant_parts:
|
55 |
-
relevant_parts = context_parts # Fallback auf gesamten Text, wenn keine Übereinstimmungen gefunden werden
|
56 |
-
|
57 |
-
# Frage beantworten: Kombiniere Antworten aus relevanten Abschnitten
|
58 |
answers = []
|
59 |
for part in relevant_parts:
|
60 |
try:
|
61 |
result = qa_pipeline(question=question, context=part)
|
62 |
answers.append(result['answer'])
|
63 |
-
except Exception
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
final_answer = refine_answer(" ".join(answers).strip())
|
68 |
return final_answer
|
69 |
|
70 |
-
# Gradio-Interface
|
71 |
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath")
|
72 |
question_input = gr.Textbox(label="Frage eingeben", placeholder="Stelle eine Frage zu dem PDF-Dokument")
|
73 |
response_output = gr.Textbox(label="Antwort")
|
74 |
|
75 |
-
# Gradio-Interface
|
76 |
interface = gr.Interface(
|
77 |
fn=chatbot_response,
|
78 |
inputs=[pdf_input, question_input],
|
79 |
outputs=response_output,
|
80 |
title="Verbesserte PDF-Fragebeantwortung",
|
81 |
-
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Antworten basieren nur auf den PDF-Inhalten
|
82 |
)
|
83 |
|
84 |
if __name__ == "__main__":
|
|
|
1 |
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
from PyPDF2 import PdfReader
|
4 |
+
import re
|
5 |
|
6 |
+
# Modell und Tokenizer laden
|
7 |
+
model_name = "deepset/roberta-base-squad2"
|
8 |
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
10 |
qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
|
11 |
|
12 |
+
# Funktion zum Extrahieren und Bereinigen von Text aus PDF
|
13 |
def extract_text_from_pdf(pdf_path):
|
14 |
reader = PdfReader(pdf_path)
|
15 |
text = ""
|
|
|
17 |
text += page.extract_text()
|
18 |
return text
|
19 |
|
20 |
+
def clean_text(text):
|
21 |
+
text = re.sub(r'\s+', ' ', text)
|
22 |
+
text = re.sub(r'[^\w\s.,-]', '', text)
|
23 |
+
return text.strip()
|
24 |
+
|
25 |
def split_text_into_paragraphs(text, max_length=500):
|
26 |
+
paragraphs = text.split("\n")
|
27 |
refined_paragraphs = []
|
28 |
temp = ""
|
|
|
29 |
for para in paragraphs:
|
30 |
if len(temp) + len(para) <= max_length:
|
31 |
temp += " " + para
|
|
|
34 |
temp = para
|
35 |
if temp:
|
36 |
refined_paragraphs.append(temp.strip())
|
|
|
37 |
return refined_paragraphs
|
38 |
|
39 |
+
def find_relevant_parts(question, context_parts):
|
40 |
+
keywords = question.split()
|
41 |
+
relevant_parts = [
|
42 |
+
part for part in context_parts if any(keyword.lower() in part.lower() for keyword in keywords)
|
43 |
+
]
|
44 |
+
return relevant_parts if relevant_parts else context_parts
|
45 |
+
|
46 |
+
def validate_and_refine_answer(answer):
|
47 |
+
if not answer or len(answer.split()) < 5:
|
48 |
return "Die Antwort konnte nicht eindeutig aus dem Dokument ermittelt werden."
|
49 |
+
invalid_phrases = ["bluetooth", "hand", "ke", "eingelegt"]
|
50 |
+
for phrase in invalid_phrases:
|
51 |
+
answer = answer.replace(phrase, "")
|
52 |
return answer.capitalize().strip()
|
53 |
|
|
|
54 |
def chatbot_response(pdf_path, question):
|
|
|
55 |
context = extract_text_from_pdf(pdf_path)
|
56 |
+
context = clean_text(context)
|
|
|
57 |
context_parts = split_text_into_paragraphs(context)
|
58 |
+
relevant_parts = find_relevant_parts(question, context_parts)
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
answers = []
|
61 |
for part in relevant_parts:
|
62 |
try:
|
63 |
result = qa_pipeline(question=question, context=part)
|
64 |
answers.append(result['answer'])
|
65 |
+
except Exception:
|
66 |
+
continue
|
67 |
+
|
68 |
+
final_answer = validate_and_refine_answer(" ".join(answers).strip())
|
|
|
69 |
return final_answer
|
70 |
|
71 |
+
# Gradio-Interface
|
72 |
pdf_input = gr.File(label="PDF-Datei hochladen", type="filepath")
|
73 |
question_input = gr.Textbox(label="Frage eingeben", placeholder="Stelle eine Frage zu dem PDF-Dokument")
|
74 |
response_output = gr.Textbox(label="Antwort")
|
75 |
|
|
|
76 |
interface = gr.Interface(
|
77 |
fn=chatbot_response,
|
78 |
inputs=[pdf_input, question_input],
|
79 |
outputs=response_output,
|
80 |
title="Verbesserte PDF-Fragebeantwortung",
|
81 |
+
description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt. Antworten basieren nur auf den PDF-Inhalten."
|
82 |
)
|
83 |
|
84 |
if __name__ == "__main__":
|