la04 commited on
Commit
bd2041d
·
verified ·
1 Parent(s): b4721cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -64
app.py CHANGED
@@ -1,84 +1,64 @@
1
  import gradio as gr
2
- from langchain.chains import RetrievalQA
3
  from langchain.vectorstores import Chroma
4
- from langchain.document_loaders import PyPDFLoader
5
- from langchain.embeddings import HuggingFaceEmbeddings
6
- from langchain.text_splitter import RecursiveCharacterTextSplitter
7
- from langchain.schema import Document
8
- from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
9
-
10
- # OCR-Ersatz: LayoutLMv3 für Textextraktion aus PDFs
11
- from transformers import LayoutLMv3Processor
12
  from pdf2image import convert_from_path
13
- from PIL import Image
14
- import torch
15
 
16
  class LayoutLMv3OCR:
17
  def __init__(self):
18
  self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
19
- self.model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/layoutlmv3-base-finetuned", num_labels=2)
20
 
21
  def extract_text(self, pdf_path):
22
- pages = convert_from_path(pdf_path)
23
- extracted_texts = []
24
- for page in pages:
25
- encoding = self.processor(images=page, return_tensors="pt")
26
- outputs = self.model(**encoding)
27
- logits = outputs.logits
28
- predictions = torch.argmax(logits, dim=-1).squeeze()
29
- tokens = self.processor.tokenizer.convert_ids_to_tokens(encoding.input_ids[0])
30
- page_text = " ".join([token for token, pred in zip(tokens, predictions) if pred == 1])
31
- extracted_texts.append(page_text)
32
- return extracted_texts
33
 
34
- # Initialisiere OCR
35
  ocr_tool = LayoutLMv3OCR()
36
 
37
- # Embeddings und LLM konfigurieren
38
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
39
- model_name = "google/flan-t5-base"
40
- tokenizer = AutoTokenizer.from_pretrained(model_name)
41
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
 
 
 
 
 
42
 
43
- def flan_generate(input_text):
44
- inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
45
- outputs = model.generate(**inputs, max_length=512)
46
- return tokenizer.decode(outputs[0], skip_special_tokens=True)
47
 
48
- def process_pdf_and_create_rag(pdf_path):
 
 
49
  extracted_text = ocr_tool.extract_text(pdf_path)
50
- documents = []
51
- for page_num, text in enumerate(extracted_text, start=1):
52
- doc = Document(page_content=text, metadata={"page": page_num})
53
- documents.append(doc)
54
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
55
- split_docs = text_splitter.split_documents(documents)
56
- vector_store = Chroma.from_documents(split_docs, embedding=embeddings)
57
- retriever = vector_store.as_retriever()
58
- qa_chain = RetrievalQA(retriever=retriever, combine_documents_chain=flan_generate)
59
- return qa_chain
60
 
61
- def chatbot_response(pdf_file, question):
62
- qa_chain = process_pdf_and_create_rag(pdf_file.name)
63
- response = qa_chain.run(question)
64
- relevant_pages = set()
65
- for doc in qa_chain.retriever.get_relevant_documents(question):
66
- relevant_pages.add(doc.metadata.get("page", "Unbekannt"))
67
- page_info = f" (Referenz: Seite(n) {', '.join(map(str, relevant_pages))})"
68
- return response + page_info
69
 
70
- def gradio_interface():
71
- pdf_input = gr.File(label="PDF hochladen")
72
- question_input = gr.Textbox(label="Ihre Frage", placeholder="Geben Sie Ihre Frage hier ein...")
73
- response_output = gr.Textbox(label="Antwort")
74
- interface = gr.Interface(
75
- fn=chatbot_response,
76
- inputs=[pdf_input, question_input],
77
- outputs=response_output,
78
- title="RAG Chatbot (Deutsch)"
79
- )
80
- return interface
81
 
82
  if __name__ == "__main__":
83
- interface = gradio_interface()
84
  interface.launch()
 
1
  import gradio as gr
 
2
  from langchain.vectorstores import Chroma
3
+ from langchain_community.document_loaders import PyPDFLoader
4
+ from langchain_community.embeddings import HuggingFaceEmbeddings
5
+ from transformers import LayoutLMv3Processor, AutoModelForSeq2SeqLM
6
+ from langchain.chains import RetrievalQA
7
+ from langchain.prompts import PromptTemplate
 
 
 
8
  from pdf2image import convert_from_path
9
+ import os
 
10
 
11
  class LayoutLMv3OCR:
12
  def __init__(self):
13
  self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base")
14
+ self.model = AutoModelForSeq2SeqLM.from_pretrained("microsoft/layoutlmv3-base")
15
 
16
  def extract_text(self, pdf_path):
17
+ images = convert_from_path(pdf_path)
18
+ text_pages = []
19
+ for image in images:
20
+ inputs = self.processor(images=image, return_tensors="pt")
21
+ outputs = self.model.generate(**inputs)
22
+ text = self.processor.batch_decode(outputs, skip_special_tokens=True)[0]
23
+ text_pages.append(text)
24
+ return text_pages
 
 
 
25
 
 
26
  ocr_tool = LayoutLMv3OCR()
27
 
28
+ def process_pdf_and_query(pdf_path, question):
29
+ loader = PyPDFLoader(pdf_path)
30
+ documents = loader.load()
31
+
32
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
33
+ vectordb = Chroma.from_documents(documents, embeddings)
34
+
35
+ retriever = vectordb.as_retriever()
36
+ prompt_template = "Beantworte die folgende Frage basierend auf dem Dokument: {context}\nFrage: {question}\nAntwort:"
37
+ prompt = PromptTemplate(input_variables=["context", "question"], template=prompt_template)
38
 
39
+ qa_chain = RetrievalQA.from_chain_type(llm=None, retriever=retriever, chain_type_kwargs={"prompt": prompt})
40
+ response = qa_chain.run(input_documents=documents, question=question)
41
+ return response
 
42
 
43
+ def chatbot_response(pdf, question):
44
+ pdf_path = "uploaded_pdf.pdf"
45
+ pdf.save(pdf_path)
46
  extracted_text = ocr_tool.extract_text(pdf_path)
47
+ answer = process_pdf_and_query(pdf_path, question)
48
+ os.remove(pdf_path)
49
+ return answer
 
 
 
 
 
 
 
50
 
51
+ pdf_input = gr.inputs.File(label="PDF-Datei hochladen")
52
+ question_input = gr.inputs.Textbox(label="Frage eingeben")
53
+ response_output = gr.outputs.Textbox(label="Antwort")
 
 
 
 
 
54
 
55
+ interface = gr.Interface(
56
+ fn=chatbot_response,
57
+ inputs=[pdf_input, question_input],
58
+ outputs=response_output,
59
+ title="RAG Chatbot mit PDF-Unterstützung",
60
+ description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt."
61
+ )
 
 
 
 
62
 
63
  if __name__ == "__main__":
 
64
  interface.launch()