la04 commited on
Commit
e8ecad4
·
verified ·
1 Parent(s): 269d49d

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -76
app.py DELETED
@@ -1,76 +0,0 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
- from langchain.vectorstores import FAISS
4
- from langchain.embeddings import HuggingFaceEmbeddings
5
- from langchain.text_splitter import CharacterTextSplitter
6
- from langchain.document_loaders import TextLoader
7
-
8
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
-
10
- # Funktion zum Laden und Indexieren eines Dokuments
11
- def load_and_index_document(file_path: str):
12
- loader = TextLoader(file_path)
13
- documents = loader.load()
14
- text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
15
- chunks = text_splitter.split_documents(documents)
16
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
17
- vector_store = FAISS.from_documents(chunks, embeddings)
18
- return vector_store
19
-
20
- # Antwortfunktion für den RAG-Chatbot
21
- def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, file):
22
- # Dateipfad des hochgeladenen Dokuments
23
- file_path = file.name
24
-
25
- # Dokument laden und indexieren
26
- vector_store = load_and_index_document(file_path)
27
-
28
- # Historie und Systemnachricht aufbereiten
29
- messages = [{"role": "system", "content": system_message}]
30
- for val in history:
31
- if val[0]:
32
- messages.append({"role": "user", "content": val[0]})
33
- if val[1]:
34
- messages.append({"role": "assistant", "content": val[1]})
35
-
36
- # Abruf relevanter Abschnitte aus dem Dokument
37
- docs = vector_store.similarity_search(message, k=3) # Abrufen von 3 relevanten Dokumentabschnitten
38
- context = "\n".join([doc.page_content for doc in docs])
39
-
40
- # Nachricht an das Modell
41
- full_message = f"{context}\n\nUser: {message}\nAssistant:"
42
-
43
- response = ""
44
- try:
45
- # Generierung der Antwort
46
- for message in client.chat_completion(
47
- [{"role": "system", "content": system_message}, {"role": "user", "content": full_message}],
48
- max_tokens=max_tokens,
49
- stream=True,
50
- temperature=temperature,
51
- top_p=top_p,
52
- ):
53
- token = message.choices[0].delta.content
54
- response += token
55
- yield response
56
- except Exception as e:
57
- yield f"An error occurred: {str(e)}"
58
-
59
- # Gradio-UI erstellen
60
- def create_gradio_ui():
61
- demo = gr.Interface(
62
- fn=respond,
63
- inputs=[
64
- gr.Textbox(value="You are a helpful assistant.", label="System message"),
65
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
66
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
67
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
68
- gr.File(label="Upload Document") # Datei-Upload
69
- ],
70
- live=True
71
- )
72
- return demo
73
-
74
- if __name__ == "__main__":
75
- ui = create_gradio_ui()
76
- ui.launch()