import gradio as gr from langchain.vectorstores import Chroma from langchain_community.document_loaders import PyPDFLoader from langchain_community.embeddings import HuggingFaceEmbeddings from transformers import LayoutLMv3Processor, AutoModelForTokenClassification from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate from pdf2image import convert_from_path import os class LayoutLMv3OCR: def __init__(self): self.processor = LayoutLMv3Processor.from_pretrained("microsoft/layoutlmv3-base") # Ändere AutoModelForSeq2SeqLM zu AutoModelForTokenClassification self.model = AutoModelForTokenClassification.from_pretrained("microsoft/layoutlmv3-base") def extract_text(self, pdf_path): images = convert_from_path(pdf_path) text_pages = [] for image in images: # Bilder werden für die OCR-Prozesse vorbereitet inputs = self.processor(images=image, return_tensors="pt") # Modell wird zur Textextraktion genutzt outputs = self.model(**inputs) # Hier wird der dekodierte Text extrahiert text = self.processor.batch_decode(outputs.logits, skip_special_tokens=True)[0] text_pages.append(text) return text_pages ocr_tool = LayoutLMv3OCR() def process_pdf_and_query(pdf_path, question): loader = PyPDFLoader(pdf_path) documents = loader.load() embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vectordb = Chroma.from_documents(documents, embeddings) retriever = vectordb.as_retriever() prompt_template = "Beantworte die folgende Frage basierend auf dem Dokument: {context}\nFrage: {question}\nAntwort:" prompt = PromptTemplate(input_variables=["context", "question"], template=prompt_template) qa_chain = RetrievalQA.from_chain_type(llm=None, retriever=retriever, chain_type_kwargs={"prompt": prompt}) response = qa_chain.run(input_documents=documents, question=question) return response def chatbot_response(pdf, question): pdf_path = "uploaded_pdf.pdf" pdf.save(pdf_path) extracted_text = ocr_tool.extract_text(pdf_path) answer = process_pdf_and_query(pdf_path, question) os.remove(pdf_path) return answer pdf_input = gr.inputs.File(label="PDF-Datei hochladen") question_input = gr.inputs.Textbox(label="Frage eingeben") response_output = gr.outputs.Textbox(label="Antwort") interface = gr.Interface( fn=chatbot_response, inputs=[pdf_input, question_input], outputs=response_output, title="RAG Chatbot mit PDF-Unterstützung", description="Lade eine PDF-Datei hoch und stelle Fragen zu ihrem Inhalt." ) if __name__ == "__main__": interface.launch()