import gradio as gr import os from langchain.vectorstores import FAISS # Import für Vektordatenbank FAISS from langchain.document_loaders import PyPDFLoader # PDF-Loader zum Laden der Dokumente from langchain.embeddings import HuggingFaceEmbeddings # Embeddings-Erstellung mit Hugging Face-Modellen from langchain.chains import ConversationalRetrievalChain # Chain für QA-Funktionalität from langchain.memory import ConversationBufferMemory # Speichern des Chat-Verlaufs im Speicher from langchain.llms import HuggingFaceHub # Für das Laden der Modelle von Hugging Face Hub from langchain.text_splitter import RecursiveCharacterTextSplitter # Aufteilen von Dokumenten in Chunks # Liste der LLM-Modelle (leichte CPU-freundliche Modelle) list_llm = ["google/flan-t5-small", "distilbert-base-uncased"] list_llm_simple = [os.path.basename(llm) for llm in list_llm] # PDF-Dokument laden und in Chunks aufteilen def load_doc(list_file_path): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) # Laden der Seiten aus PDF text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32) # Chunks für CPU doc_splits = text_splitter.split_documents(pages) return doc_splits # Vektordatenbank erstellen def create_db(splits): embeddings = HuggingFaceEmbeddings() # Erstellen der Embeddings mit Hugging Face vectordb = FAISS.from_documents(splits, embeddings) return vectordb # Initialisierung des ConversationalRetrievalChain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db): llm = HuggingFaceHub( repo_id=llm_model, model_kwargs={ "temperature": temperature, "max_length": max_tokens, "top_k": top_k, } ) memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False ) return qa_chain # Initialisierung der Datenbank def initialize_database(list_file_obj): list_file_path = [x.name for x in list_file_obj if x is not None] doc_splits = load_doc(list_file_path) vector_db = create_db(doc_splits) return vector_db, "Datenbank erfolgreich erstellt!" # Initialisierung des LLM def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db): llm_name = list_llm[llm_option] qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db) return qa_chain, "LLM erfolgreich initialisiert! Chatbot ist bereit." # Chat-Historie formatieren def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history # Konversationsfunktion def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history # Gradio-Frontend def demo(): with gr.Blocks() as demo: vector_db = gr.State() qa_chain = gr.State() gr.HTML("

RAG PDF Chatbot

") with gr.Row(): with gr.Column(): gr.Markdown("### Schritt 1: Lade PDF-Dokument hoch") document = gr.Files(height=300, file_count="multiple", file_types=[".pdf"], interactive=True) db_btn = gr.Button("Erstelle Vektordatenbank") db_progress = gr.Textbox(value="Nicht initialisiert", show_label=False) gr.Markdown("### Schritt 2: Wähle LLM und Einstellungen") llm_btn = gr.Radio(list_llm_simple, label="Verfügbare Modelle", value=list_llm_simple[0], type="index") slider_temperature = gr.Slider(0.01, 1.0, value=0.5, step=0.1, label="Temperature") slider_maxtokens = gr.Slider(64, 512, value=256, step=64, label="Max Tokens") slider_topk = gr.Slider(1, 10, value=3, step=1, label="Top-k") qachain_btn = gr.Button("Initialisiere QA-Chatbot") llm_progress = gr.Textbox(value="Nicht initialisiert", show_label=False) with gr.Column(): gr.Markdown("### Schritt 3: Stelle Fragen an dein Dokument") chatbot = gr.Chatbot(height=400, type="messages") msg = gr.Textbox(placeholder="Frage stellen...") submit_btn = gr.Button("Absenden") db_btn.click(initialize_database, [document], [vector_db, db_progress]) qachain_btn.click(initialize_LLM, [llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], [qa_chain, llm_progress]) msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot]) submit_btn.click(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot]) demo.launch(debug=True) if __name__ == "__main__": demo()