import os import gradio as gr from langchain_community.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline from langchain_community.vectorstores import FAISS from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory from transformers import pipeline EMBEDDINGS_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2" LLM_MODEL_NAME = "google/flan-t5-small" def load_and_split_docs(list_file_path): if not list_file_path: return [], "Fehler: Keine Dokumente gefunden!" loaders = [PyPDFLoader(x) for x in list_file_path] documents = [] for loader in loaders: documents.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=32) return text_splitter.split_documents(documents) def create_db(docs): embeddings = HuggingFaceEmbeddings(model_name=EMBEDDINGS_MODEL_NAME) return FAISS.from_documents(docs, embeddings) def initialize_database(list_file_obj): if not list_file_obj or all(x is None for x in list_file_obj): return None, "Fehler: Keine Dateien hochgeladen!" list_file_path = [x.name for x in list_file_obj if x is not None] doc_splits = load_and_split_docs(list_file_path) vector_db = create_db(doc_splits) return vector_db, "Datenbank erfolgreich erstellt!" def initialize_llm_chain_wrapper(temperature, max_tokens, vector_db): if vector_db is None: return None, "Fehler: Vektordatenbank nicht initialisiert!" qa_chain = initialize_llm_chain(temperature, max_tokens, vector_db) return qa_chain, "QA-Chatbot ist bereit!" def initialize_llm_chain(temperature, max_tokens, vector_db): local_pipeline = pipeline( "text2text-generation", model=LLM_MODEL_NAME, max_length=max_tokens, temperature=temperature ) llm = HuggingFacePipeline(pipeline=local_pipeline) memory = ConversationBufferMemory(memory_key="chat_history") retriever = vector_db.as_retriever() return ConversationalRetrievalChain.from_llm( llm, retriever=retriever, memory=memory, return_source_documents=True ) def conversation(qa_chain, message, history): if qa_chain is None: return None, [{"role": "system", "content": "Der QA-Chain wurde nicht initialisiert!"}], history if not message.strip(): return qa_chain, [{"role": "system", "content": "Bitte eine Frage eingeben!"}], history try: history = history[-5:] # Nur die letzten 5 Nachrichten übergeben response = qa_chain.invoke({"question": message, "chat_history": history}) response_text = response["answer"] sources = [doc.metadata["source"] for doc in response["source_documents"]] sources_text = "\n".join(sources) if sources else "Keine Quellen verfügbar" formatted_response = [ {"role": "user", "content": message}, {"role": "assistant", "content": f"{response_text}\n\n**Quellen:**\n{sources_text}"} ] return qa_chain, formatted_response, history + [(message, response_text)] except Exception as e: return qa_chain, [{"role": "system", "content": f"Fehler: {str(e)}"}], history def demo(): with gr.Blocks() as demo: vector_db = gr.State() qa_chain = gr.State() chat_history = gr.State([]) gr.HTML("