lab2-ui / app.py
MyNameIsSimon's picture
fix
b0e4b09
raw
history blame
3.21 kB
import gradio as gr
from llama_cpp import Llama
from llama_cpp.llama_chat_format import MoondreamChatHandler
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient()
class MyModel:
def __init__(self):
self.client = None
self.current_model = ""
def respond(
self,
message,
history: list[tuple[str, str]],
model,
system_message,
max_tokens,
temperature,
min_p,
):
if model != self.current_model or self.current_model is None:
chat_handler = MoondreamChatHandler.from_pretrained(
repo_id="lab2-as/lora_model_gguf",
filename="*mmproj*",
)
client = Llama.from_pretrained(
repo_id="lab2-as/lora_model_gguf",
filename="*text-model*",
chat_handler=chat_handler,
n_ctx=2048, # n_ctx should be increased to accommodate the image embedding
)
self.client = client
self.current_model = model
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in self.client.create_chat_completion(
messages,
temperature=temperature,
top_p=min_p,
stream=True,
max_tokens=max_tokens
):
delta = message["choices"][0]["delta"]
if "content" in delta:
response += delta["content"]
yield response
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# model=model,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
my_model = MyModel()
model_choices = [
"lab2-as/lora_model",
"lab2-as/lora_model_no_quant",
]
demo = gr.ChatInterface(
my_model.respond,
additional_inputs=[
gr.Dropdown(choices=model_choices, value=model_choices[0], label="Select Model"),
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=128, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Min-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()