|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from torch.cuda import is_available |
|
|
|
from unsloth import FastLanguageModel |
|
from transformers import TextIteratorStreamer |
|
from threading import Thread |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
class MyModel: |
|
def __init__(self): |
|
self.client = None |
|
self.current_model = "" |
|
self.tokenizer = None |
|
|
|
def respond( |
|
self, |
|
message, |
|
history: list[tuple[str, str]], |
|
model, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
min_p, |
|
): |
|
if model != self.current_model or self.current_model is None: |
|
client, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = model, |
|
max_seq_length = 2048, |
|
dtype = None, |
|
load_in_4bit = True, |
|
) |
|
FastLanguageModel.for_inference(client) |
|
self.client = client |
|
self.tokenizer = tokenizer |
|
self.current_model = model |
|
|
|
text_streamer = TextIteratorStreamer(self.tokenizer, skip_prompt = True) |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
inputs = self.tokenizer.apply_chat_template( |
|
messages, |
|
tokenize = True, |
|
add_generation_prompt = True, |
|
return_tensors = "pt", |
|
).to("cuda" if is_available() else "cpu") |
|
|
|
generation_kwargs = dict(input_ids=inputs, streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, min_p=min_p) |
|
thread = Thread(target=self.client.generate, kwargs=generation_kwargs) |
|
thread.start() |
|
|
|
response = "" |
|
|
|
for new_text in text_streamer: |
|
response += new_text |
|
yield response.strip("<|eot_id|>") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
my_model = MyModel() |
|
model_choices = [ |
|
"lab2-as/lora_model_gguf", |
|
"lab2-as/lora_model", |
|
] |
|
demo = gr.ChatInterface( |
|
my_model.respond, |
|
additional_inputs=[ |
|
gr.Dropdown(choices=model_choices, value=model_choices[0], label="Select Model"), |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=128, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Min-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|