Commit
·
ae519a4
1
Parent(s):
df728ac
attempt to use unsloth
Browse files
app.py
CHANGED
@@ -1,57 +1,100 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
"""
|
5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
"""
|
7 |
|
8 |
-
client = InferenceClient()
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "user", "content": val[0]})
|
25 |
-
if val[1]:
|
26 |
-
messages.append({"role": "assistant", "content": val[1]})
|
27 |
-
|
28 |
-
messages.append({"role": "user", "content": message})
|
29 |
-
|
30 |
-
response = ""
|
31 |
-
|
32 |
-
for message in client.chat_completion(
|
33 |
-
messages,
|
34 |
-
max_tokens=max_tokens,
|
35 |
-
stream=True,
|
36 |
-
temperature=temperature,
|
37 |
-
top_p=top_p,
|
38 |
-
model=model,
|
39 |
):
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
response += token
|
43 |
-
yield response
|
44 |
|
45 |
|
46 |
"""
|
47 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
48 |
"""
|
|
|
49 |
model_choices = [
|
50 |
"lab2-as/lora_model_gguf",
|
51 |
"lab2-as/lora_model",
|
52 |
]
|
53 |
demo = gr.ChatInterface(
|
54 |
-
respond,
|
55 |
additional_inputs=[
|
56 |
gr.Dropdown(choices=model_choices, value=model_choices[0], label="Select Model"),
|
57 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
@@ -62,7 +105,7 @@ demo = gr.ChatInterface(
|
|
62 |
maximum=1.0,
|
63 |
value=0.95,
|
64 |
step=0.05,
|
65 |
-
label="
|
66 |
),
|
67 |
],
|
68 |
)
|
|
|
1 |
+
import os
|
2 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
3 |
+
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import InferenceClient
|
6 |
+
from torch.cuda import is_available
|
7 |
+
|
8 |
+
from unsloth import FastLanguageModel
|
9 |
+
from transformers import TextIteratorStreamer
|
10 |
+
from threading import Thread
|
11 |
|
12 |
"""
|
13 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
14 |
"""
|
15 |
|
16 |
+
# client = InferenceClient()
|
17 |
+
class MyModel:
|
18 |
+
def __init__(self):
|
19 |
+
self.client = None
|
20 |
+
self.current_model = ""
|
21 |
+
self.tokenizer = None
|
22 |
+
|
23 |
+
def respond(
|
24 |
+
self,
|
25 |
+
message,
|
26 |
+
history: list[tuple[str, str]],
|
27 |
+
model,
|
28 |
+
system_message,
|
29 |
+
max_tokens,
|
30 |
+
temperature,
|
31 |
+
min_p,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
):
|
33 |
+
if model != self.current_model or self.current_model is None:
|
34 |
+
client, tokenizer = FastLanguageModel.from_pretrained(
|
35 |
+
model_name = model,
|
36 |
+
max_seq_length = 2048,
|
37 |
+
dtype = None,
|
38 |
+
load_in_4bit = True,
|
39 |
+
)
|
40 |
+
FastLanguageModel.for_inference(client) # Enable native 2x faster inference
|
41 |
+
self.client = client
|
42 |
+
self.tokenizer = tokenizer
|
43 |
+
self.current_model = model
|
44 |
+
|
45 |
+
text_streamer = TextIteratorStreamer(self.tokenizer, skip_prompt = True)
|
46 |
+
|
47 |
+
messages = [{"role": "system", "content": system_message}]
|
48 |
+
|
49 |
+
for val in history:
|
50 |
+
if val[0]:
|
51 |
+
messages.append({"role": "user", "content": val[0]})
|
52 |
+
if val[1]:
|
53 |
+
messages.append({"role": "assistant", "content": val[1]})
|
54 |
+
|
55 |
+
messages.append({"role": "user", "content": message})
|
56 |
+
|
57 |
+
inputs = self.tokenizer.apply_chat_template(
|
58 |
+
messages,
|
59 |
+
tokenize = True,
|
60 |
+
add_generation_prompt = True, # Must add for generation
|
61 |
+
return_tensors = "pt",
|
62 |
+
).to("cuda" if is_available() else "cpu")
|
63 |
+
|
64 |
+
generation_kwargs = dict(input_ids=inputs, streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, min_p=min_p)
|
65 |
+
thread = Thread(target=self.client.generate, kwargs=generation_kwargs)
|
66 |
+
thread.start()
|
67 |
+
|
68 |
+
response = ""
|
69 |
+
|
70 |
+
for new_text in text_streamer:
|
71 |
+
response += new_text
|
72 |
+
yield response.strip("<|eot_id|>")
|
73 |
+
|
74 |
+
# for message in client.chat_completion(
|
75 |
+
# messages,
|
76 |
+
# max_tokens=max_tokens,
|
77 |
+
# stream=True,
|
78 |
+
# temperature=temperature,
|
79 |
+
# top_p=top_p,
|
80 |
+
# model=model,
|
81 |
+
# ):
|
82 |
+
# token = message.choices[0].delta.content
|
83 |
|
84 |
+
# response += token
|
85 |
+
# yield response
|
86 |
|
87 |
|
88 |
"""
|
89 |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
90 |
"""
|
91 |
+
my_model = MyModel()
|
92 |
model_choices = [
|
93 |
"lab2-as/lora_model_gguf",
|
94 |
"lab2-as/lora_model",
|
95 |
]
|
96 |
demo = gr.ChatInterface(
|
97 |
+
my_model.respond,
|
98 |
additional_inputs=[
|
99 |
gr.Dropdown(choices=model_choices, value=model_choices[0], label="Select Model"),
|
100 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
|
|
105 |
maximum=1.0,
|
106 |
value=0.95,
|
107 |
step=0.05,
|
108 |
+
label="Min-p (nucleus sampling)",
|
109 |
),
|
110 |
],
|
111 |
)
|