import gradio as gr from llama_cpp import Llama from llama_cpp.llama_chat_format import MoondreamChatHandler """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient() class MyModel: def __init__(self): self.client = None self.current_model = "" def respond( self, message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, min_p, ): if model != self.current_model or self.current_model is None: chat_handler = MoondreamChatHandler.from_pretrained( repo_id="lab2-as/lora_model_gguf", ) client = Llama.from_pretrained( repo_id="lab2-as/lora_model_gguf", chat_handler=chat_handler, n_ctx=2048, # n_ctx should be increased to accommodate the image embedding ) self.client = client self.current_model = model messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in self.client.create_chat_completion( messages, temperature=temperature, top_p=min_p, stream=True, max_tokens=max_tokens ): delta = message["choices"][0]["delta"] if "content" in delta: response += delta["content"] yield response # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # model=model, # ): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ my_model = MyModel() model_choices = [ "lab2-as/lora_model", "lab2-as/lora_model_no_quant", ] demo = gr.ChatInterface( my_model.respond, additional_inputs=[ gr.Dropdown(choices=model_choices, value=model_choices[0], label="Select Model"), gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Min-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()