import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import gradio as gr from huggingface_hub import InferenceClient from torch.cuda import is_available from unsloth import FastLanguageModel from transformers import TextIteratorStreamer from threading import Thread """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient() class MyModel: def __init__(self): self.client = None self.current_model = "" self.tokenizer = None def respond( self, message, history: list[tuple[str, str]], model, system_message, max_tokens, temperature, min_p, ): if model != self.current_model or self.current_model is None: client, tokenizer = FastLanguageModel.from_pretrained( model_name = model, max_seq_length = 2048, dtype = None, load_in_4bit = True, ) FastLanguageModel.for_inference(client) # Enable native 2x faster inference self.client = client self.tokenizer = tokenizer self.current_model = model text_streamer = TextIteratorStreamer(self.tokenizer, skip_prompt = True) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) inputs = self.tokenizer.apply_chat_template( messages, tokenize = True, add_generation_prompt = True, # Must add for generation return_tensors = "pt", ).to("cuda" if is_available() else "cpu") generation_kwargs = dict(input_ids=inputs, streamer=text_streamer, max_new_tokens=max_tokens, use_cache=True, temperature=temperature, min_p=min_p) thread = Thread(target=self.client.generate, kwargs=generation_kwargs) thread.start() response = "" for new_text in text_streamer: response += new_text yield response.strip("<|eot_id|>") # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # model=model, # ): # token = message.choices[0].delta.content # response += token # yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ my_model = MyModel() model_choices = [ "lab2-as/lora_model_gguf", "lab2-as/lora_model", ] demo = gr.ChatInterface( my_model.respond, additional_inputs=[ gr.Dropdown(choices=model_choices, value=model_choices[0], label="Select Model"), gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=128, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Min-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()