File size: 4,295 Bytes
1b4ebab
c420a2a
9616708
65849c8
e1e7a0d
 
18385f6
e1e7a0d
 
e9d5caf
e1e7a0d
9616708
e1e7a0d
 
 
9616708
e1e7a0d
 
 
 
 
 
9616708
e1e7a0d
 
 
 
9616708
e1e7a0d
 
 
9616708
e1e7a0d
 
9616708
e1e7a0d
 
 
9616708
e1e7a0d
 
 
d7b060a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165aa59
423991c
5d3a98e
8a9ddbd
423991c
5d3a98e
8a9ddbd
 
423991c
18385f6
7e137d1
 
 
 
 
 
 
 
 
 
8b32461
7e137d1
 
 
aa5234d
7e137d1
 
 
ecea336
7e137d1
 
 
 
 
 
ecea336
7e137d1
 
 
 
 
 
d7b060a
165aa59
1b4ebab
e1e7a0d
 
 
 
1b4ebab
9616708
 
1b4ebab
9616708
 
 
 
 
 
e1e7a0d
9616708
c420a2a
e1e7a0d
9616708
e1e7a0d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from starlette.routing import Mount
import numpy as np
from tensorflow import keras
import hashlib
import json
import os

class TicTacToeAI:
    def __init__(self, model_path="model/model.keras"):
        self.model_path = model_path
        self.model = None
        self.load_model()

    def load_model(self):
        """Wczytuje model z pliku"""
        if os.path.exists(self.model_path):
            self.model = keras.models.load_model(self.model_path)
            return True
        return False

    def get_move(self, board):
        """Zwraca najlepszy ruch dla danego stanu planszy"""
        if self.model is None:
            raise ValueError("Model nie został wczytany")

        board_array = np.array(board)
        predictions = self.model.predict(board_array.reshape(1, -1), verbose=0)[0]
        valid_moves = np.where(board_array == 0)[0]

        if len(valid_moves) == 0:
            raise ValueError("Brak dostępnych ruchów")

        valid_predictions = [(i, pred) for i, pred in enumerate(predictions) if i in valid_moves]
        return int(max(valid_predictions, key=lambda x: x[1])[0])


# Inicjalizacja AI
ai = TicTacToeAI()



# Ustawienie prefiksu aplikacji
app = FastAPI(root_path="/spaces/labapawel/tictactoe")

@app.on_event("startup")
async def print_routes():
    """Wyświetla wszystkie zarejestrowane trasy"""
    for route in app.routes:
        if hasattr(route, "methods"):  # Jeśli trasa obsługuje metody HTTP
            print(f"Path: {route.path}, Name: {route.name}, Methods: {route.methods}")
        elif isinstance(route, Mount):  # Jeśli to katalog statyczny
            print(f"Mounted Path: {route.path}, Name: {route.name}, App: {route.app}")
        else:  # Inny typ trasy
            print(f"Other Route Path: {route.path}, Name: {route.name}")

# Montowanie katalogu publicznego
app.mount("/static", StaticFiles(directory="public"), name="static")

@app.get("/", response_class=HTMLResponse)
async def read_root():
    try:
        with open("public/index.html", "r") as file:
            return HTMLResponse(content=file.read(), status_code=200)
    except FileNotFoundError:
        return HTMLResponse(content="Plik index.html nie został znaleziony", status_code=404)


@app.get("/status")
async def get_status():
    print("Endpoint /status został wywołany.")
    return {
        "status": "success",
        "model_loaded": True,  # lub odpowiedni warunek
        "model_path": "model/model.keras"
    }


@app.post("/savegame")
async def save_game(request: Request):
    try:
        data = await request.json()
        final_board = data.get("final_board")
        sequence = data.get("sequence")

        if not final_board or not sequence:
            raise HTTPException(status_code=400, detail="Missing required data")

        game_hash =  hash(str(final_board) + str(sequence))
        game_data = {
            "final_board": final_board,
            "sequence": sequence,
            "hash": game_hash
        }

        try:
            with open("public/games_data.json", "r") as f:
                existing_data = json.load(f)
        except (FileNotFoundError, json.JSONDecodeError):
            existing_data = []

        existing_data.append(game_data)

        with open("public/games_data.json", "w") as f:
            json.dump(existing_data, f)

        return {"status": "success", "hash": game_data["hash"]}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.post("/move")
async def get_move(request: Request):
    """
    Endpoint do wykonania ruchu AI
    """
    try:
        data = await request.json()  # Pobierz dane JSON z żądania
        board = data.get("board")


        if not board:
            raise HTTPException(status_code=400, detail="Brak planszy w żądaniu")

        if len(board) != 9 or not all(x in [0, 1, -1] for x in board):
            raise HTTPException(status_code=400, detail="Nieprawidłowe dane planszy")

        move = ai.get_move(board)

        return {"status": "success", "move": move}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))