File size: 3,266 Bytes
1b4ebab c420a2a 9616708 65849c8 e1e7a0d e9d5caf e1e7a0d 9616708 e1e7a0d 9616708 e1e7a0d 9616708 e1e7a0d 9616708 e1e7a0d 9616708 e1e7a0d 9616708 e1e7a0d 9616708 e1e7a0d d7b060a 165aa59 423991c 5d3a98e 8a9ddbd 423991c 5d3a98e 8a9ddbd 423991c d7b060a 165aa59 1b4ebab e1e7a0d 1b4ebab 9616708 1b4ebab 9616708 e1e7a0d 9616708 c420a2a e1e7a0d 9616708 e1e7a0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
from fastapi import FastAPI, HTTPException, Request
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from starlette.routing import Mount
import numpy as np
from tensorflow import keras
import json
import os
class TicTacToeAI:
def __init__(self, model_path="model/model.keras"):
self.model_path = model_path
self.model = None
self.load_model()
def load_model(self):
"""Wczytuje model z pliku"""
if os.path.exists(self.model_path):
self.model = keras.models.load_model(self.model_path)
return True
return False
def get_move(self, board):
"""Zwraca najlepszy ruch dla danego stanu planszy"""
if self.model is None:
raise ValueError("Model nie został wczytany")
board_array = np.array(board)
predictions = self.model.predict(board_array.reshape(1, -1), verbose=0)[0]
valid_moves = np.where(board_array == 0)[0]
if len(valid_moves) == 0:
raise ValueError("Brak dostępnych ruchów")
valid_predictions = [(i, pred) for i, pred in enumerate(predictions) if i in valid_moves]
return int(max(valid_predictions, key=lambda x: x[1])[0])
# Inicjalizacja AI
ai = TicTacToeAI()
# Ustawienie prefiksu aplikacji
app = FastAPI(root_path="/spaces/labapawel/tictactoe")
@app.on_event("startup")
async def print_routes():
"""Wyświetla wszystkie zarejestrowane trasy"""
for route in app.routes:
if hasattr(route, "methods"): # Jeśli trasa obsługuje metody HTTP
print(f"Path: {route.path}, Name: {route.name}, Methods: {route.methods}")
elif isinstance(route, Mount): # Jeśli to katalog statyczny
print(f"Mounted Path: {route.path}, Name: {route.name}, App: {route.app}")
else: # Inny typ trasy
print(f"Other Route Path: {route.path}, Name: {route.name}")
# Montowanie katalogu publicznego
app.mount("/static", StaticFiles(directory="public"), name="static")
@app.get("/", response_class=HTMLResponse)
async def read_root():
try:
with open("public/index.html", "r") as file:
return HTMLResponse(content=file.read(), status_code=200)
except FileNotFoundError:
return HTMLResponse(content="Plik index.html nie został znaleziony", status_code=404)
@app.get("/status")
async def get_status():
print("Endpoint /status został wywołany.")
return {
"status": "success",
"model_loaded": True, # lub odpowiedni warunek
"model_path": "model/model.keras"
}
@app.post("/move")
async def get_move(request: Request):
"""
Endpoint do wykonania ruchu AI
"""
try:
data = await request.json() # Pobierz dane JSON z żądania
board = data.get("board")
if not board:
raise HTTPException(status_code=400, detail="Brak planszy w żądaniu")
if len(board) != 9 or not all(x in [0, 1, -1] for x in board):
raise HTTPException(status_code=400, detail="Nieprawidłowe dane planszy")
move = ai.get_move(board)
return {"status": "success", "move": move}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
|