ladapetrushenko commited on
Commit
f2b6412
·
1 Parent(s): 78d9025

Upload 9 files

Browse files
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from construction_prediction.constants import load_w2v
3
+ from construction_prediction.construction_calculator import get_collocates_for_word_type
4
+
5
+ st.title('Калькулятор')
6
+ form = st.form('Form')
7
+ target_word = form.text_input(label='Введите целевое слово:',
8
+ placeholder='Введите целевое слово',
9
+ label_visibility='collapsed'
10
+ )
11
+ target_word_pos = form.selectbox(label='Укажите часть речи целевого слова:',
12
+ options=['ADJ', 'ADVB', 'COMP', 'CONJ', 'GRND',
13
+ 'INFN', 'INTJ', 'NOUN', 'NPRO', 'NUMR',
14
+ 'None', 'PRCL', 'PRED', 'PREP', 'PRTF',
15
+ 'PRTS', 'VERB'],
16
+ index=None,
17
+ placeholder='Укажите часть речи целевого слова',
18
+ label_visibility='collapsed'
19
+ )
20
+ current_model = form.selectbox(label='MODEL',
21
+ options=['MODEL 1: nplus', 'MODEL 2: fontanka',
22
+ 'MODEL 3: librusec', 'MODEL 4: stihi_ru'],
23
+ index=None,
24
+ placeholder='Выберите модель подбора коллокатов',
25
+ label_visibility='collapsed'
26
+ )
27
+ restrict_vocab = form.text_area(label='Restrict vocab',
28
+ value='',
29
+ placeholder='Restrict vocab',
30
+ label_visibility='collapsed'
31
+ )
32
+ collocate_number = form.number_input(label='Количество коллокатов в выдаче:',
33
+ min_value=1,
34
+ step=1,
35
+ value=10,
36
+ format='%i',
37
+ placeholder='Количество коллокатов в выдаче',
38
+ # label_visibility='collapsed'
39
+ )
40
+ form_button = form.form_submit_button('Запустить')
41
+
42
+ if form_button:
43
+ if not target_word:
44
+ st.error('Вы не ввели целевое слово')
45
+ st.stop()
46
+ if not target_word_pos:
47
+ st.error('Вы не указали часть речи целевого слова')
48
+ st.stop()
49
+ if not current_model:
50
+ st.error('Вы не выбрали модель')
51
+ st.stop()
52
+
53
+ if current_model == 'MODEL 1: nplus':
54
+ model = load_w2v('models/nplus1_word2vec.bin')
55
+ elif current_model == 'MODEL 2: fontanka':
56
+ model = load_w2v('models/fontanka_word2vec.bin')
57
+ elif current_model == 'MODEL 3: librusec':
58
+ model = load_w2v('models/librusec_word2vec.bin')
59
+ else:
60
+ model = load_w2v('models/stihi_ru_word2vec.bin')
61
+
62
+ output = get_collocates_for_word_type(model=model,
63
+ word=target_word,
64
+ target_pos=target_word_pos,
65
+ topn=collocate_number,
66
+ restrict_vocab=restrict_vocab.split()
67
+ )
68
+ st.write(output)
construction_prediction/__pycache__/constants.cpython-310.pyc ADDED
Binary file (817 Bytes). View file
 
construction_prediction/__pycache__/construction_calculator.cpython-310.pyc ADDED
Binary file (1.32 kB). View file
 
construction_prediction/constants.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from pymorphy2 import MorphAnalyzer
3
+ from gensim.models import KeyedVectors
4
+
5
+
6
+ @st.cache_resource(show_spinner="Загружаю модель поиска коллокатов")
7
+ def load_w2v(model_path):
8
+ _w2v_model = KeyedVectors.load_word2vec_format(model_path, binary=True)
9
+ return _w2v_model
10
+
11
+
12
+ @st.cache_resource(show_spinner="Загружаю морфологический анализатор")
13
+ def load_morph():
14
+ _morph = MorphAnalyzer(lang='ru')
15
+ return _morph
16
+
construction_prediction/construction_calculator.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from construction_prediction.constants import load_morph
2
+
3
+
4
+ morph = load_morph()
5
+
6
+
7
+ def filter_results(model, word, target_pos, collocate_pos, topn, restrict_vocab):
8
+ collocates = []
9
+ target_word = '_'.join((word, target_pos))
10
+ for coll, similarity in model.similar_by_word(target_word, topn=topn, restrict_vocab=restrict_vocab):
11
+ try:
12
+ coll_word, pos = coll.split('_')
13
+ if pos == collocate_pos:
14
+ collocates.append((coll_word, similarity))
15
+ if len(collocates) == topn:
16
+ break
17
+ except ValueError:
18
+ continue
19
+ return collocates
20
+
21
+
22
+ def get_collocates_for_word_type(model, word, target_pos, topn, restrict_vocab):
23
+ collocate_pos = 'NOUN' if target_pos == 'ADJ' else 'ADJ'
24
+
25
+ collocates = filter_results(model, word, target_pos, collocate_pos, topn * 100, restrict_vocab)
26
+ output = ''
27
+ for collocate_with_score in collocates[:topn]:
28
+ collocate = collocate_with_score[0]
29
+ similarity_score = round(collocate_with_score[1], 3)
30
+ noun = word if target_pos == 'NOUN' else collocate
31
+ adj = word if target_pos == 'ADJ' else collocate
32
+ try:
33
+ # Чтобы была конструкция, в которой один элемент склоняется
34
+ adj = morph.parse(adj)[0].inflect({morph.parse(noun)[0].tag.gender}).word
35
+ # Чтобы исключить результаты типа 'человечный человек'
36
+ if not adj[:3] == noun[:3]:
37
+ # if noun == 'день' and not 'днев' in adj and not 'недел' in adj:
38
+ output += f'\t{adj} {noun}: {similarity_score}\n\n'
39
+ except AttributeError:
40
+ continue
41
+ return output
models/fontanka_word2vec.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df598857b57857eff856a002e7ec76d01e1f77d6bb8702e3418012376530536c
3
+ size 55259519
models/librusec_word2vec.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd5c7a940159eee9960923ab96b64677527cc71d9b7a83d10fc77c060b6a9efb
3
+ size 32123951
models/nplus1_word2vec.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df63f6f39f0142ab8c21e46e12e2c2f410847e838315171e0690b6d130e2ffa8
3
+ size 5735163
models/stihi_ru_word2vec.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea532b947e9a562aeabcc85157d14b8f660b13412af4b6a50f81128efaca5a4c
3
+ size 19397974